ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

9
Issue
vol 63 / September, 2020
Article

DOI 10.17586/0021-3454-2016-59-11-952-958

UDC 004.414:(615.47:616-072.7)

FLEXIBLE ARCHITECTURE OF HARDWARE-SOFTWARE COMPLEXES FOR PHYSIOLOGICAL RESEARCHES

E. L. Wasserman
SPIIRAS, Laboratory of Biomedical Informatics; St. Petersburg State University, Department of Healthcare Management; Herzen State Pedagogical University of Russia, Department of Foundations of Special Education;


N. K. Kartashev
SPIIRAS, Laboratory of Biomedical Informatics; Scientist


O. V. Zhvalevsky
SPIIRAS, Laboratory of Biomedical Informatics; Scientist


S. B. Roudnitsky
SPIIRAS, Laboratory of Biomedical Informatics; Scientist


Read the full article 

Abstract. The problems of design of flexible PC-controlled systems for physiological researches are discussed. The most common case of using ready-made medical subsystems in building of the resulting system has been analysed. To mitigate inherent to this case problems as a core part is introduced the universal device synchronizing other parts of system also allowing its cascading. Considering the software design the following principles are proposed: modularity; script-based configuring of 1) hardware, 2) algorithms of registering of signals, 3) data processing algorithms; and also using of adaptive storage system.
Keywords: flexible architecture, PC-controlled system, physiology signals acquisition, polygraph investigation, modularization, script-based configuring

References:
  1. Goble C. IEEE Internet Computing, 2014, no. 5(18), pp. 4–8. DOI: 10.1109/MIC.2014.88.
  2. Lee I., Sokolsky O., Chen S., Hatcliff J., Jee E., Kim B.G., King A., Mullen-Fortino M., Park S., Roederer A., Venkatasubramanian K. Proc. of the IEEE, 2012, no. 1 (100), pp. 75–90. DOI: 10.1109/JPROC.2011.2165270.
  3. Silva L.C., Almeida H.O., Perkusich A., Perkusich M. Sensors, 2015, no. 15, pp. 27 625–27 670. DOI: 10.3390/s151127625.
  4. Lee E.A. Sensors, 2015, no. 15, pp. 4837–4869. DOI: 10.3390/s150304837.
  5. Silva L.C., Perkusich M., Almeida H.O., Perkusich A., Lima M.A.M., Gorgônio K.C. MEDINFO 2015: eHealth-enabled Health: Proc. of the 15th World Congress on Health and Biomedical Informatics, Amsterdam, Washington, DC, USA, IMIA and IOS Press, 2015, рр. 549–553. DOI: 10.3233/978-1-61499-564-7-549.
  6. Rudnitskiy S.B., Ivantsevich N.V., Kirpanev A.V. Scientific Bulletin of the Moscow State Technical University of Civil Aviation, 2012, no. 176(2), pp. 153–158 (in Russ.)
  7. Babich O.A. Obrabotka informatsii v navigatsionnykh kompleksakh (Processing of Information in Navigation Complexes), Moscow, 1991, 512 р. (in Russ.)
  8. Storti S.F., Formaggio E., Franchini E., Bongiovanni L.G., Cerini R., Fiaschi A., Michel C.M., Manganotti P. Magnetic Resonance Materials in Physics, Biology and Medicine, 2012, no. 25, pp. 345–360. DOI: 10.1007/s10334-012-0316-9.
  9. Vasserman L.I., Anan'eva N.I., Vasserman E.L., Ivanov M.V., Mazo G.E., Neznanov N.G., Gorelik A.L., Ezhova R.V., Ershov B.B., Sorokina A.V., Yanushko M.G. V.M. Bekhterev Review of Psychiatry and Medical Psychology, 2013, no. 4, pp. 58–67. (in Russ.)
  10. Rudnitskiy S.B., Vasserman E.L., Kartashev N.K., Zhvalevskiy O.V. BIOTEKHNOSFERA, 2012, no. 3–4, pp. 72–77 (in Russ.)  
  11. Gotman J., Kobayashi E., Bagshaw A.P., Bénar C.-G., Dubeau F. J. of Magnetic Resonance Imaging, 2006, no. 23, pp. 906–920. DOI: 10.1002/jmri.20577.
  12. Popova E.A., Vasserman E.L., Kartashev N.K. Sistemnyy analiz v meditsine SAM 2015 (System Analysis in Medicine), Proceedings of the IX International Scientific Conference, Blagoveshchensk, 2015, рр. 35–38. (in Russ.)