ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)

vol 62 / April, 2019

DOI 10.17586/0021-3454-2017-60-1-32-38

UDC 621.372.82:621.383.8-752.4:536.7


I. Vahrameev
Perm State Technical University, Department of Heat Engineering;

K. S. Galyagin
Perm State Technical University, Department of Heat Engineering; Head of the Chair

A. M. Oshivalov
Perm State Technical University, Department of Heat Engineering;

M. A. Savin
Perm National Research Polytechnic University, Department of Welding production technology and construction materials; Post-Graduate Student

Read the full article 

Abstract. An improved procedure for numerical compensation of thermal drift for fiber-optic gyroscope in real-time operation of the device is developed. The main idea of the proposed approach lies in the assumption of dependence of the thermal drift of the gyroscope on temperature, its first and second derivatives with respect to time. The correction procedure is performed individually for each fiber-optic sensor based on the data of field tests. The procedure of search of the necessary calibration coefficients is described, modernization of the iterative prediction algorithm and compensation of thermal drift of fiber-optic gyroscope is carried out. It is shown that application of the correction procedure makes it possible to achieve an essential reduction in thermal drift of fiber-optic gyroscope. The results of the comparative analysis of the new and the old algorithms to compensate for drift are presented.
Keywords: fiber-optic gyroscope, thermal drift, sensitivity element, prediction, correction, calculation, thermometry

  1. Sheremet'ev A.G. Volokonnyy opticheskiy giroskop (Fiber Optical Gyroscope), Moscow, 1987, 152 р. (in Russ.)
  2. Dzhashitov V.E., Pankratov V.M. Matematicheskie modeli teplovogo dreyfa giroskopicheskikh datchikov inertsial'nykh sistem (Mathematical Models of Thermal Drift of Gyroscopic Sensors of Inertial Systems), St. Petersburg, 2001, 150 р. (in Russ.)
  3. Dranitsyna E.V., Egorov D.A. Navigatsiya i upravlenie dvizheniem(Navigation and motion control), Proceedings of XIV Young Scientists Conference, St. Petersburg, 2012, рр. 447–452. (in Russ.)
  4. Galyagin K.S., Oshivalov M.A., Vakhrameev E.I., Ul'rikh T.A. Vestnik PGTU. Aerokosmicheskaya tekhnika, 2005, no. 21, pp. 23–28. (in Russ.)
  5. Vakhrameev E.I., Galyagin K.S., Ivonin A.S., Oshivalov M.A., Ul'rikh T.A. Izv. vuzov. Priborostroenie, 2011, no. 1 (54), pp. 32–37. (in Russ.)
  6. Galyagin K.S., Oshivalov M.A., Selyaninov Yu.A., Savin M.A. Izv. vuzov. Priborostroenie, 2015, no. 12(58), pp. 979–984. (in Russ.)
  7. Galyagin K.S., Oshivalov M.A., Savin M.A. Vestnik PNIPU. Mekhanika, 2015, no. 4, pp. 55–71. (in Russ.)
  8. Rupasov A.V. Issledovanie metoda lokal'nogo temperaturnogo vozdeystviya i ego primenenie dlya kompensatsii dreyfa volokonno-opticheskogo giroskopa (Research of a Method of Local Temperature Influence and its Application for Compensation of drift of a Fiber-optical Gyroscope), Extended abstract of candidate’s thesis, St. Petersburg, 2014. (in Russ.)
  9. Polyakov D.V., Lukin K.G., Petrov M.N. VESTNIK of Yaroslav the Wise NOVGOROD STATE UNIVERSITY, 2012, no. 68, pp. 106–109. (in Russ.)
  10. Pavlov D.V., Petrov M.N., Lukin K.G. VESTNIK of Yaroslav the Wise NOVGOROD STATE UNIVERSITY, 2013, no. 75(1), pp. 85–87. (in Russ.)
  11. Kuznetsov Yu.A., Oleynik S.V., Uspenskiy V.B., Khats'ko N.E. Radіoelektronіka, іnformatika, upravlіnnya, 2012, no. 2, pp. 152–156. (in Russ.)
  12. Song R., Chen X., Shen Ch., Zhang H. J. of Sensors. Hindawi Publ. Corp. 2014. DOI: 10.1155/2014/273043.
  13. Galyagin K.S., Oshivalov M.A., Vakhrameev E.I., Ivonin A.S. Vestnik PNIPU. Aerokosmicheskaya tekhnika, 2012, no. 32, pp. 127–140. (in Russ.)
  14. Vakhrameev E.I., Galyagin K.S., Ivonin A.S., Oshivalov M.A. Izv. vuzov. Priborostroenie, 2013, no. 5(56), pp. 79–84. (in Russ.)