ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

6
Issue
vol 61 / JUNE, 2018
Article

DOI 10.17586/0021-3454-2017-60-3-195-203

UDC 004.92:004.942

TECHNOLOGIES OF COGNITIVE VISUALIZATION OF TEMPORAL COMPLEX NETWORKS

K. D. Mukhina
ITMO University, Saint Petersburg, 197101, Russian Federation; engineer


K. O. Bochenina
ITMO University, Saint Petersburg, 197101, Russian Federation; junior researcher


A. S. Karsakov
ITMO University, Saint Petersburg, 197101, Russian Federation,; engineer


A. V. Boukhanovsky
ITMO University, Saint Petersburg, 197101, Russian Federation; Director


Read the full article 

Abstract. Methods of temporal network visualization are considered. The basic methodological and algorithmic features of dynamic processes and temporal networks are reviewed. Several examples of programming realization are presented and application of the described technologies is discussed. 
Keywords: temporal complex network, dynamic process, graph visualization, cognitive visualization

References:
  1. Broder A. et al. Computer Networks, 2000, no. 1(33), pp. 309–320.
  2. Palla G., Barabási A. L., Vicsek T. Nature, 2007, no. 7136(446), pp. 664–667.
  3. Bhalla U.S., Iyengar R. Science, 1999, no. 5400(283), pp. 381–387.
  4. Kohn K.W. Molecular Biology of the Cell, 1999, no. 8(10), pp. 2703–2734.
  5. Holme P., Saramäki J. Physics reports, 2012, no. 3(519), pp. 97–125.
  6. Albert R., Barabási A.L. Reviews of Modern Physics, 2002, no. 1(74), pp. 47.
  7. Jeong H. et al. Nature, 2000, no. 6804(407), pp. 651–654.
  8. Batagelj V., Mrvar A. Connections, 1998,no. 2(21), pp. 47–57.
  9. Auber D. Graph Drawing Software, Berlin, Heidelberg, Springer-Verlag, 2004, рp. 105–126.
  10. Ahmed A. et al. Graph Drawing: Proc. of Intern. Symp., Berlin, Heidelberg, Springer-Verlag, 2005, рp. 468–479.
  11. Ellson J. et al. Graph Drawing: Proc. of Intern. Symp., Berlin, Heidelberg, Springer-Verlag, 2001, рp. 483–484.
  12. Ellson J. et al. Graph Drawing Software, Berlin, Heidelberg, Springer-Verlag, 2004, рp. 127–148.
  13. Bastian M. et al. ICWSM, 2009, no. 8, pp. 361–362.
  14. Zaidi F., Muelder C., Sallaberry A. Encyclopedia of Social Network Analysis and Mining, 2014, рp. 37–48.
  15. Kempe D., Kleinberg J., Tardos É. Proc. of the 9th ACM SIGKDD Intern. Conf. on Knowledge Discovery and Data Mining,ACM, 2003,рp. 137–146.
  16. Blondel V.D. et al. J. of Statistical Mechanics: Theory and Experiment, 2008, no. 10(2008), pp. P10008.
  17. Nicosia V.et al. Graph metrics for temporal networks // Temporal Networks; Ed.: P. Holme, J. Saramäki. Springer-Verlag Berlin, Heidelberg, 2013. P. 15–40.
  18. Hu Y., Shi L. Wiley Interdisciplinary Reviews: Computational Statistics, 2015,no. 2(7), pp. 115–136.
  19. Bezgodov A. et al. Procedia Computer Science, 2015, no. 51, pp. 2729–2733.
  20. Jacomy M. et al. PLoS One, 2014,no. 6(9).
  21. Gibson H., Faith J., Vickers P. Information Visualization, 2013, no. 3–4(12), pp. 324–357.