ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)

vol 65 / June, 2022

DOI 10.17586/0021-3454-2017-60-4-331-339

UDC 681.23:681.787.7


V. T. Prokopenko
ITMO University, Saint Petersburg, 197101, Russian Federation; Professor

E. E. Majorov
Saint-Petersburg state university of aerospace instrumentation; Associate professor

A. C. Mashek
Budyonny Military Academy of Communications, Department of Physics and Mathematics, St. Petersburg; Senior Lecturer

G. A. Tsygankova
Naval Polytechnic Institute, Department of Physics; PhD

A. G. Khaidarov
St. Petersburg State Technological Institute (Technical University), Department of Business Informatics; Associate Professor

V. K. Abramian
S. M. Budyonny Military Academy of Telecommunications, Department of Physics; Professor

Y. E. Zaitsev
St. Petersburg Electrotechnical University “LETI”, Department of Physics; Associate Professor

G. G. Khaidarov
St. Petersburg State Technological Institute (Technical University), Department of Engineering Design; Associate Professor

Read the full article 

Abstract. Various methods of interference fringes tuning are evaluated. The features of two-beam holographic registration and reconstruction of the original and perturbed states of a diffuse reflecting surface are considered. Quantitative assessment of measurement error is carried out; the deviation of one of the supporting beams at 10–5 rad is shown to lead to phase shift of the object wave for 0,22 of the interference fringe and to the error in the phase of the interference fringe δφ = 2π·0,22. The possibility of applying shear interferometry instead of two-beam interferometry allows to use a single reference beam and thus improve the measurement accuracy for two orders of magnitude. The phase difference between the beams at the output of transverse shear interferometer (Jamin interferometer) is analyzed. The result allows to estimate the measuring range of the displacement vector magnitude; the maximum and the minimum value of the measured offset are determined to be 1,5 mm and 0,01 μm respectively.
Keywords: holographic interferometry, phase shift of light wave, diffuse-reflecting surface, Jamin interferometer, transverse shear interferometer, measuring range of displacement vector magnitude

  1. Powell R.L., Stetson K.A. J. Opt. Soc. Am., 1965, no. 55, pp. 1593–1599.
  2. Aleksandrov E.B., Bonch-Bruevich A.M. Technical Physics, 1967, no. 2(37), pp. 360–365. (in Russ.)
  3. Patent RU 2289098, Sposob opredeleniya deformatsiy diffuzno otrazhayushchikh ob"ektov (The Method of Determining the Deformation of Diffusely Reflecting Objects), Bol'shakov O.P., Kotov I.R., Mayorov E.E., Mayorova O.V., Prokopenko V.T., Khopov V.V., 2006, Bulletin 34. (in Russ.)
  4.  Mayorov E.E., Prokopenko V.T., Ushveridze L.A. Instruments, 2012, no. 7(145), pp. 23–25 (in Russ.)
  5. Majorov E.E., Prokopenko V.T., Ushveridze L.A. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2012, no. 2(78), pp. 13–16. (in Russ.)
  6. Majorov E.E., Prokopenko V.T. Biomedical Engineering, 2012, no. 3(46), pp. 109–111.
  7. Majorov E.E., Prokopenko V.T. Nauchnoe Priborostroenie (Scientific Instrumentation), 2013, no. 2(23), pp. 38–46. (in Russ.)
  8. Majorov E.E. Scientific review, 2013, no. 9, pp. 329–332. (in Russ.)
  9. Majorov E.E., Prokopenko V.T., Sherstobitova A.S. Journal of Optical Technology, 2013, no. 3(80), pp. 162–165. (in Russ.)
  10.  Majorov E.E., Prokopenko V.T. Interferometriya diffuzno otrazhayushchikh ob"ektov (Interferometry of Diffusely Reflecting Objects), St. Petersburg, 2014, 193 р. (in Russ.)
  11. Majorov E.E., Prokopenko V.T., Ushveridze L.A. Biomedical Engineering, 2014, no. 6(47), pp. 304–306.
  12. Majorov E.E., Mashek A.Ch., Udakhina S.V., Tsygankova G.A., Khaydarov G.G., Chernyak T.A. Instruments, 2015, no. 11(185), pp. 26–31. (in Russ.)
  13. Majorov E.E., Mashek A.Ch., Udakhina S.V., Tsygankova G.A., Khaydarov G.G., Chernyak T.A. Nauchnoe Priborostroenie (Scientific Instrumentation), 2015, no. 4(25), pp. 61–66. (in Russ.)