ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)

vol 67 / April, 2024

DOI 10.17586/0021-3454-2017-60-4-367-374

UDC 621.373.826:535.21


A. V. Belikov
ITMO University, Saint Petersburg, 197101, Russian Federation; Pavlov University, Saint Petersburg, 197022, Russian Federation; Full Professor; Senior Researcher

S. V. Gagarsky
ITMO University, Saint Petersburg, 197101, Russian Federation; leading engineer

A. N. Sergeev
ITMO University, Saint Petersburg, 197101, Russian Federation; assistant

S. N. Smirnov
ITMO University, Saint Petersburg, 197101, Russian Federation; Assistant, Leading Engineer

Read the full article 

Abstract. Results of the study of hydrodynamic processes induced in liquid by the Yb,Er:Glass (wavelength of 1,54 μm) laser radiation pulses of microsecond duration with an energy of 100±5 mJ are presented. The investigations carried out using three methods — acoustic signal detection, optical probing, and high-speed video recording – allow for objective and comprehensive picture of excited processes. The correlation between data obtained using these methods are established. The analysis of images and oscillograms demonstrates that the laser pulses, delivered in a bulk of saline (0,9 % sodium chloride aqueous solution) via quartz-quartz optical fiber with a core diameter of 470 μm, induce thermoelastic waves and the formation of steam-gas cavity (bubble). Dynamics of optical properties of the liquid under exposure to Yb,Er:Glass laser pulse appears to be related mostly to the bubble formation. It is shown that the build-up stage of the steamgas cavity occurs at 5—10 s after the beginning of adiabatic laser exposure with the energy of about 100 mJ. The cavity reaches the maximum size (up to 3 mm in diameter) at 140 s (on average) relative to laser pulse rising edge. After that, it collapses to the critical size of 0.5 mm at about 120 s and detaches from the fiber end surface. The presented data on the steam-gas cavity size dynamics may be useful when optimizing the temporal and energy parameters of laser radiation for laser processing of submerged objects, including effective and safe treatment of biological objects.
Keywords: Yb,Er:Glass laser, microsecond pulses, hydrodynamics, optical probing, acoustic signal, high-speed video

  1. Webb C.E., Jones J.D.C., eds., Handbook of Laser Technology and Applications (Three-Volume Set), IOP Publishing, 2004, 2752 p.
  2. Niemz M.H. Laser-Tissue Interactions. Fundamentals and Applications, Springer, 2007, 316 p. DOI: 10.1007/978-3-540-72192-5.
  3. Vogel A., Schmidt P., Flucke B. Proc. SPIE, 2002, no. 4617. DOI: 10.1117/12.472512.
  4.  Zhang X., Chen C., Chen F. et al. Lasers Med Sci., 2016, no. 5(31), pp. 891–898. DOI: 10.1007/s10103-016-1931-x.
  5. Hecht J. Laser Focus World, March 1, 2008,
  6. Fedorov S.N., Kopaeva V.G., Andreev Yu.V., Bogdalova E.G., Belikov A.V. Oftal'mokhirurgiya (Ophthalmosurgery), 1999, no. 1, pp. 3–12. (in Russ.)
  7. Kopaeva V.G., Andreev Yu.V. Lazernaya ekstraktsiya katarakty (Laser Extraction of a Cataract), Moscow, 2011, 262 p. (in Russ.)
  8. Gatsu A.F. Infrakrasnye lazery (1–3 mkm) v khirurgii naruzhnykh otdelov glaza (Infrared Lasers (1–3 µm) in Surgery of the External Eye Parts), Extended abstract of candidate’s thesis, St. Petersburg, 1995. (in Russ.)
  9. Agarwal S., Agarwal A., Apple D.J. Textbook of Ophthalmology, Vol. 1, Jaypee Brothers Publishers, 2002, 3086 p. DOI: 10.5005/jp/books/10931.
  10. Belikov A.V., Gagarskiy S.V., Gubin A.B., Vayner C.Ya., Sergeev A.N., Smirnov S.N. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, no. 6(15), pp. 1021–1029. DOI: 10.17586/2226-1494-2015-15-6-1021-1029 (in Russ.)
  11. Chen Y.F., Chen S.W., Tsai S.W., Lan Y.P. Applied Physics B, 2003, no. 3(76), pp. 263–266. DOI: 10.1007/s00340-002-1086-2.
  12. Hodgson N., Nighan W.L., Golding D.J., Eisel D. Optics Letters, 1994, no. 17(19), pp. 1328–1330. DOI: 10.1364/OL.19.001328.
  13. (in Russ.)
  14. Hale G.M., Querry M.R. Appl. Opt., 1973, no. 3(12), pp. 555–563. DOI: 10.1364/AO.12.000555.
  15. Karlsson G., Laurell F., Tellefsen J., Denker B., Galagan B., Osiko V., Sverchkov S. Appl. Phys. B, 2002, no. 1(75), pp. 41–46. DOI: 10.1007/s00340-002-0950-4.
  16. Jansen E.D., Asshauer T., Frenz M., Motamedi M., Delacretaz G., Welch A.J. Lasers in Surgery and Medicine, 1996, no. 3(18), pp. 278–293. DOI: 10.1002/(SICI)1096-9101(1996)18:3<278::AID-LSM10>3.0.CO;2-2
  17. Lu T., Li Z.J. Chinese Sci. Bull., 2011, no. 12(56), pp. 1226–1229. DOI: 10.1007/s11434‑011‑4367‑5
  18. Stock K., Steigenhofer D., Pongratz T., Graser R., Sroka R. Photonics & Lasers in Medicine, 2016, no. 2(5), pp.141–150. DOI: 10.1515/plm-2015-0039.
  19. Frenz M., Pratisto H., Konz F., Jansen E.D.  IEEE J. of Quantum Electronics, 1996, no. 12(32), pp. 2025–2036. DOI: 10.1109/3.544746
  20. Lord Rayleigh, Philosophical Magazine Series 6, 1917, no. 200(34), pp. 94–98. DOI:10.1080/14786440808635681
  21. Blanken J., De Moor R.J., Meire M., Verdaasdonk R. Lasers in Surgery and Medicine, 2009, no. 7(41), pp. 514–519. DOI: 10.1002/lsm.20798.
  22. Sugimoto Y., Yamanishi Y., Sato K., Moriyama M. J. of Flow Control, Measurement & Visualization, 2015, no. 4(3), pp. 135–143. DOI: 10.4236/jfcmv.2015.34013
  23. Vogel A., Lauterborn W., Timm R. J. Fluid Mech., 1989, no. 206, pp. 299–338. DOI: 10.1017/S0022112089002314 
  24. Petkovsek R., Mozina J., Mocnik G. Opt. Express, 2005, no. 11(13), pp. 4107–4112. DOI: 10.1364/OPEX.13.004107
  25. Petkovsek R., Gregorcic P., Mozina J. Meas. Sci. Technol., 2007, no. 9(18), pp. 2972–2978. DOI:10.1088/0957-0233/18/9/030.
  26. Petkovšeka R., Gregorčič P. J. Appl. Phys., 2007, no. 4(102), pp.044909–044909-9. DOI: 10.1063/1.2774000.
  27. Bufetova G.A., Nikolaev D.A., Seregin V.F. et al. Laser Physics, 1999, no. 1(9), pp. 314–318.
  28. Denker B.I., Osiko V.V., Sverchkov S.E. et al. Quantum Electronics, 1992, no. 6(19), pp. 544–547. (in Russ.)
  29. Frenz M., Könz F., Pratisto H., Weber H.P.,Silenok A.S., Konov V.I. J. Appl. Phys., 1998, no. 84, pp. 5905–5913. DOI: 10.1063/1.368906