ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)

vol 60 / DECEMBER, 2017

DOI 10.17586/0021-3454-2017-60-5-460-465

UDC 681.7.063


S. V. Varzhel
ITMO University, Saint Petersburg, 197101, Russian Federation; Associate professor

A. A. Petrov
ITMO University, 197101, Saint-Petersburg, Russian Federation; Associate professor

S. V. Arkhipov
ITMO Univresity, 197101, Saint-Petersburg, Russian Federation; postgraduate

D. A. Palanjyan
ITMO University, Department of Laser Technologies and Applied Ecology, St. Petersburg; Graduate Student

A. S. Munko
ITMO University, Saint Petersburg, 197101, Russian Federation; student

Y. D. Smirnova
ITMO University, Department of Laser Systems and Technologies;; Student

N. S. Kondakova
ITMO University, Department of Light-Guided Photonics; Student

Read the full article 

Abstract. Recording of fiber Bragg grating by ArF excimer laser radiation is investigated. The record schematic under consideration uses of phase mask method and the possibility of pre-orientation of the birefringence axes of the anisotropic optical fiber. Results of type II fiber Bragg gratings inscription by a single ArF excimer laser pulse in an anisotropic optical fiber with elliptical stress cladding at enhanced concentration of germanium dioxide concentration in the fiber core are obtained at various orientation of birefringence axis. Comparative analysis of the results demonstrates that type II Bragg grating inscription is more effective at the fiber with elliptical stress cladding slow birefringence axis positioning perpendicularly to the laser beam propagation direction. Besides, preorientation of the birefringence axes of the anisotropic optical fiber before the fiber Bragg grating inscription is an effective way to reduce the polarization extinction ratio on the induced optical fiber diffraction structure.
Keywords: fiber Bragg grating, birefringence, anisotropy, excimer laser, phase mask

  1. Kashyap R. Fiber Bragg Gratings, San Diego, CA, Academic Press, 1999, 478 р.
  2. Othonos A. Rev. Sci. Instrum., 1997, no. 12(68), рр. 4309–4341.
  3. Othonos A., Kalli K. Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing, Boston, Artech House, 1999.
  4. Patent RU 2155359, Sposob izgotovleniya volokonnykh svetovodov, sokhranyayushchikh polyarizatsiyu izlucheniya (Way of Production of the Fiber Light Guides Keeping Polarization of Radiation), Eron'yan M.A., 2000.(in Russ.)
  5. Bureev S.V., Dukel'skiy K.V., Eron'yan M.A., Zlobin P.A., Komarov A.V., Levit L.G., Strakhov V.I., Khokhlov A.V. Journal of Optical Technology, 2007, no. 4(74), рр. 85–87. (in Russ.)
  6. Carrara S.L.A., Kim B.Y., Shaw H.J. Opt. Lett., 1986, no. 7(11), рр. 470–472.
  7. Fujikura Ltd. Product Bulletin #88112000 on the FSM-2O PM, 1990, 2 р.
  8. Arkhipov S.V., Strigalev V.E., Soldatova N.S., Varzhel' S.V., Mun'ko A.S., Smirnova Yu.D. Journal of Optical Technology, 2016, no. 11(83), рр. 79–82. (in Russ.)
  9. Petrov A.A., Varzhel' S.V., Kulikov A.V., Palandzhyan D.A., Gribaev A.I., Konnov K.A. Journal of Instrument Engineering, 2014, no. 6(57), рр. 31–36. (in Russ.)
  10. Varzhel' S.V., Kulikov A.V., Meshkovskiy I.K., Strigalev V.E. Journal of Optical Technology, 2012, no. 4(79), рр. 85–89. (in Russ.)
  11. Varzhel' S.V., Kulikov A.V., Zakharov V.V., Aseev V.A. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2012, no. 5(81), рр. 25–28. (in Russ.)
  12. Reekie L., Archambault J.-L., Russell P. St. J. 1OSA/OFC, 1993, PD14, рр. 327–330.
  13. Varzhel' S.V., Zakharov V.V., Vinogradova G.N., Veniaminov A.V., Strigalev V.E. Optics and Spectroscopy, 2013, no. 1(114), рр. 129–132. (in Russ.)
  14. Zhao Y., Sun B., Liu Y., Ren J., Zhang J., Yang J., Canning J., Peng G.D., Yuan L. Opt. Express, 2016, no. 1(24), рр. 611–619.