ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

10
Issue
vol 62 / November, 2019
Article

DOI 10.17586/0021-3454-2017-60-5-466-473

UDC 681.7.063 + 681.7.069.24

FIBER BRAGG GRATINGS INSCRIPTION USING TALBOT INTERFEROMETER AND KrF EXCIMER LASER SYSTEM

A. I. Gribaev
ITMO University, Saint Petersburg, 197101, Russian Federation; research engineer


S. V. Varzhel
ITMO University, Saint Petersburg, 197101, Russian Federation; Associate professor


K. A. Konnov
ITMO University, Saint Petersburg, 197101, Russian Federation; research engineer


A. M. Stam
ITMO University, Department of Light-Guided; Post-Graduate Student


R. F. Idrisov
ITMO University, Saint Petersburg, 197101, Russian Federation; postgraduate


Y. I. Slozhenikina
JSC " Kotlin-Novator", Saint Petersburg, 192019, Russian Federation; engineer


Read the full article 

Abstract. An experimental setup for the fiber Bragg gratings inscription using Talbot interferometer is described. A KrF excimer laser system CL-7550 of the type “Master Oscillator – Power Amplifier” by Optosystems Ltd., Russia, with enhanced spatial and temporal coherence is applied as the UV radiation source in the experimental setup, which includes laser beam transportation optical system and Talbot interferometer. To ensure the effective recording, the laboratory setup also includes spectral width control system based on Fabry Perot interferometer, laser beam energy distribution control system, monitoring system of laser pulse energy density on the optical fiber, and control system of optical fiber to the laser beam relative position: spectral width control system, based on Fabry-Perot interferometer; laser beam energy distribution control system; monitoring system of laser pulse energy density on the optical fiber; and control system of optical fiber to the laser beam relative position. Results of type I fiber Bragg gratings inscription in single-pulse and multi-pulse modes are presented. Dependence of spectral characteristics of fiber Bragg gratings on various recording conditions are analyzed. A method for experimental investigation of optical fiber relative photo-refractivity is described.
Keywords: fiber Bragg grating, Talbot interferometer, KrF excimer laser system, phase mask, coherence

References:
  1. Shan-li W., Yong W., Man-li H., Jian-hong W., Cheng G., Hai-feng L. J. of Basic and Applied Physics, 2013, no. 1(2), рр. 20–23.
  2. Köppe E., Bartholmai M., Daum W., Gon X., Holmann D., Basedau F., Schukar V., Westphal A., Sahre M., Beck U. Materials Today: Proc. 3, 2016, рр. 1009–1013.
  3. Liaw S.-K., Tsai P.-S., Wang H., Minh H. L., Ghassemlooy Z. Opt. Communications, 2016, no. 358, рр. 154–159.
  4. Fortin V., Maes F., Bernier M., Bah S. T., D’auteuil M., Vallẻe R. Opt. Lett., 2016, no. 41(3), рр. 559–562.
  5. Shanker R., Srivastava P., Bhattacharya M. Proc. Intern. Conf. on Computational Techniques in Information and Communication Technologies (ICCTICT), 2016.
  6. Spolitis S., Ivanovs G. IEEE Swedish Comm. Technol. Workshop (Swe-CTW), 2011.
  7. Udd E. Proc. SPIE 6770, Fiber Optic Sensors and Applications, 2007, vol. 677002.
  8. Guan B., Tan Y., Tam H. Opt. Express, 2009, no. 22(17), рр. 19544–19550.
  9. Lawson N.J., Correia R., James S.W., Partridge M., Staines S.E., Gautrey J.E., Garry K.P., Holt J.C., Tatam R.P. Meas. Sci. Technol., 2016, no. 27(104001), рр. 1–17.
  10. Vasil'ev S.A., Medvedkov O.I., Korolev I.G., Bozhkov A.S., Kurkov A.S., Dianov E.M. Quantum Electronics, 2005, no. 12(35), рр. 1085–1103. (in Russ.)
  11. Hill K.O., Malo B., Bilodeau F., Johnson D.C., Albert J. Appl. Phys. Lett., 1993, no. 10(62), рр. 1035–1037.
  12. Varzhel’ S.V., Kulikov A.V., Meshkovskii I.K., Strigalev V.E. J. of Optical Technology, 2012, no. 4(79), рр. 257–259.
  13. Lai Y., Zhou K., Sugden K., Bennon I. OSA/CLEO/QELS, 2008, paper CTuU2.
  14. Arkhipov S.V., Grehn M., Varzhel S V., Strigalev V.E., Griga N., Eichler H.J. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, no. 3(15), рр. 373–377. (in Russ.)
  15. Bartelt H., Schuster K., Unger S., Chojetzki C., Rothhardt M., Latka I. Appl. Opt., 2007, no. 17(46), рр. 3417–3424.
  16. Stam A.M., Idrisov R.F., Gribaev A.I., Varzhel’ S.V., Munko A.S., Arkhipov S.V., Konnov K.A. Materials of the XII Intern. Research and Practice Conf., Munich, 29–30 Dec., 2015, рр. 100–104.
  17. Meltz G., Morey W.W., Glenn W.H. Opt. Lett., 1989, no. 15(14), рр. 823–825.
  18. Bartelt H., Schuster K., Unger S., Chojetzki C., Rothhardt M., Latka I. Appl. Opt., 2007, no. 17(46), рр. 3417–3424.
  19. Chojetzki C., Rothhardt M., Ommer J., Unger S., Schuster K., Mueller H.-R. Opt. Eng. Lett., 2005, no. 6(44), рр. 060503–1.
  20. Askins C.G., Puttnam M.A., Williams G.M., Friebele E.J. Opt. Lett., 1994, no. 2(19), рр. 147–149.
  21. Mayer E.E., Gillett D.A., Govorkov S. Fiber and Integrated Optics, 1999, no. 18, рр. 189–198.
  22. Rothhardt M., Chojetzki C., Mueller H.R. Proc. of SPIE, 2004, no. 5579, рр. 127–135.
  23. Gribaev A.I., Pavlishin I.V., Stam A.M., Idrisov R.F., Varzhel S.V., Konnov K.A. Optical and Quantum Electronics, 2016, no. 12(48), рр. 540.