ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)

vol 60 / AUGUST, 2017

DOI 10.17586/0021-3454-2017-60-8-704-711

UDC 681.5


J. . Wang
ITMO University; Post-Graduate Student

Y. A. Kapitanyuk
ITMO University; student

S. A. Chepinsky
ITMO University; Associate professor

Холунин С. А.
Университет ИТМО; ассистент кафедры систем управления и информатики

D. A. Khvostov
Saint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Saint Petersburg, Russia; student

A. Y. Krasnov
ITMO University, Department of Control Systems and Informatics; Post-Graduate Student

C. Yifan
ITMO University, Department of Control Systems and Informatics; Post-Graduate Student

L. Huimin
ITMO University, Department of Control Systems and Informatics; Post-Graduate Student

Abstract. The problem of synthesis of the trajectory control algorithm for a solid body moving with a preassigned speed along a spatial trajectory given in an implicit form, is considered. The control law is synthesized using differential geometry methods through the nonlinear transformation of the initial dynamic model. Effectiveness of the proposed mathematical model of spatial motion and corresponding nonlinear control algorithm is confirmed by presented results of computer simulation. The formulated control laws is supposed to be useful in development of systems of trajectory control over airborne and underwater mobile robots.
Keywords: algorithm, motion, orientation, trajectory control, coordinates transformation

  1. Lee T., Leoky M., and McClamroch N. 49th IEEE Conference on Decision and Control (CDC), 2010, рр. 5420–5425.
  2. Aguiar A.P., Hespanha J.P., Kokotovic P.V. IEEE Transactions on Automatic Control, 2005, no. 2(50), pp. 234–239.
  3. Breivik M. and Fossen T. 44th IEEE Conference on Decision and Control, CDC-ECC ’05, 2005, рр.627–634.
  4. Fradkov A., Miroshnik I., and Nikiforov V. Nonlinear and Adaptive Control of Complex Systems. Mathematics and Its Applications,Springer, 1999.
  5. Banaszuk A., Hauser J. Systems & control letters, 1995, no. 2(26), pp. 95–105.
  6. Kolesnikov A.A., Veselov G.E. еt al. Sinergeticheskie metody upravleniya slozhnymi sistemami: mekhanicheskie i elektromekhanicheskie sistemy (Synergetic Control Methods of Complex Systems: Mechanical and Electromechanical Systems), Moscow, 2006, 304 p. (in Russ.)
  7. Burdakov S.F., Miroshnik I.V., Stel'makov R.E. Sistemy upravleniya dvizheniem kolesnykh robotov (Motion Control Systems of Wheeled Robots), St. Petersburg, 2001, 236 p. (in Russ.)
  8. Miroshnik I.V. Soglasovannoe upravlenie mnogokanal'nymi sistemami (Coordinated Control of Multi-Channel Systems), Leningrad, 1990. (in Russ.)
  9. Miroshnik I., Nikiforov V.O. Prepr. 13th IFAC World Congress, 1996, no. A, pp.361–366.
  10. Miroshnik I.V., Chepinsky S.A. 2nd IFAC Conference on Mechatronic Systems, Berkeley, 2002, рp. 959–1004.
  11. Miroshnik I.V., Chepinsky S.A. Preprints 7th IFAC Symposium on Robot Control, Wroclaw, Poland, September 1–3, 2003, рp. 105–110.
  12. Pyrkin A.A., Bobtsov A.A., Chepinskiy S.A., and Kapitanyuk Yu.A. Preprints 8th IFAC Symposium on Nonlinear Control Systems, Bologna, Italy (NOLCOS 2010), September 1–3, 2010, pp. 481–486.
  13. Bobtsov A., Kolyubin S., Pyrkin A., Shavetov V., Chepinskiy S., Kapitanyuk Y., Kapitonov A., Bardov V., Titov A., Surov M. 18th IFAC World Congress, Milan, Italy, 2011.
  14. Kapitanyuk Yu.A., Chepinskiy S.A. Journal of Instrument Engineering,2013, no. 4(56), pp. 65–70.(in Russ.)
  15. Kapitanyuk Y. and Chepinsky S. Gyroscopy and Navigation, 2013, no. 4(4), pp. 198–203.
  16. Kapitanyuk Y., Chepinskiy S., and Kapitonov A. 19th IFAC World Congress, 2014.
  17. Jian Wang, Kapitanyuk Y.A., Chepinskiy S.A., Dongliang Liu, Krasnov A.J. Geometric path following control in a moving frame. IFAC-PapersOnLine,2015, no. 11(48), pp. 150–155.