ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)

vol 63 / September, 2020

DOI 10.17586/0021-3454-2017-60-8-728-733

UDC 53.096


I. A. Esipenko
Perm Scientific Industrial Instrument-Making Public Joint-Stock Company; Design Engineer

D. A. Lykov
Perm Scientific Industrial Instrument-Making Public Joint-Stock Company; Design Engineer

Read the full article 

Abstract. The influence of elastic strain on variation of light wave phase in a fiber-optic gyroscope is studied both numerically and experimentally. Solution to the stationary thermos-elasticity problem for a structurally inhomogeneous fiber circuit is derived to determine local elastic strains in the fiber. The temperature effect on the object under investigation is taken as a load. The numerical solution to the problem is found out by the finite element method in the ANSYS software. Calculated distributions of elastic strain along the fiber are presented. The frequencies of stimulated Brillouin scattering at two temperatures are determined experimentally using an optical time domain analyzer. The influence of temperature variations and elastic strain on the Brillouin frequency shift is established. The calculated strain values are shown to be in accordance with the experimental data.
Keywords: fiber-optic gyro, fiber circuit, refractive index, elastic strain, finite element method

  1. Gromov D.S., Sharkov A.V.Journal of Instrument Engineering,2013, no. 1(56), pp.62–67.(in Russ.)
  2. Vakhrameev E.I., Galyagin K.S., Oshivalov M.A., Savin M.A.Journal of Instrument Engineering,2017, no. 1(60), pp.32–38. DOI: 10.17586/0021-3454-2017-60-1-32-38.(in Russ.)
  3. Dzhashitov V.E., Pankratov V.M., Golikov A.V. Journal of Machinery Manufacture and Reliability, 2014, no. 1, pp. 92–100. (in Russ.)
  4. Sharkov I.A., Rupasov A.V., Strigalev V.E., Volkovskiy S.A. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2013, no. 86, рp. 31–35. (in Russ.)
  5. Antonova M.V., Matveev V.A. Herald of the Bauman Moscow State Technical University. Series Instrument Engineering, 2014, no. 3, pp. 73–80. (in Russ.)
  6. Lagakos N., Bucaro J.A., Jarzynski J. Appl. Opt., 1981, no. 13(20), pp. 2305–2308. DOI: 10.1364/AO.20.002305.
  7. Mohr F., Schadt F. Proc. SPIE, 2004, no. 5502, pp. 410–413. DOI: 10.1117/12.566654.
  8. Butter C.D., Hocker G.B. Appl. Opt., 1978, no. 18(17), pp. 2867–2869. DOI: 10.1364/AO.17.002867.
  9. Nowacki W. Teoria niesymetrycznej sprężystości, Warsawa, PWN, 1971, 246 р.
  10. Agrawal G.P. Nonlinear Fiber Optics Academic Press, 2012, 631 p.
  11. Besprozvannykh V.G., Krivosheev A.I., Kel' O.L. Applied Photonics, 2016, no. 4(2), pp. 329–341. (in Russ.)
  12. Minakuchi S., Sanada T., Takeda N., Mitani S., Mizutani T., Sasaki Y., Shinozaki K.Journal of Lightwave Technology, 2014, no. 12(33), pp. 2658–2662. DOI: 10.1109/JLT.2014.2375198.
  13. Zou W., He Z., Hotate K. Journal of Lightwave Technology, 2008, no. 13(26), pp. 1854–1861. DOI: 10.1109/JLT.2007.912052.