ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

8
Issue
vol 63 / August, 2020
Article

DOI 10.17586/0021-3454-2017-60-11-1003-1011

UDC 681.5

TRAJECTORY CONTROL OVER RIGID BODY MOVEMENT RELATIVE TO A MOBILE OBJECT

A. Y. Krasnov
ITMO University, Department of Control Systems and Informatics; Post-Graduate Student


Y. A. Kapitanyuk
ITMO University; student


S. A. Chepinsky
ITMO University; Associate professor


S. A. Kholunin
ITMO University, Saint Petersburg, 197101, Russian Federation; leading engineer


. Liu Huimin
ITMO University, Department of Control Systems and Informatics; Post-Graduate Student


D. A. Khvostov
Saint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Saint Petersburg, Russia; student


. Chen Yifan
ITMO University; Post-Graduate Student


Read the full article 

Abstract. The problem of synthesis of trajectory control algorithm for rigid body model in a moving frame is considered. Adopted mathematical description of the body is represented by a dynamic model with unidirectional thrust. A procedure for synthesizing the laws of trajectory control using differential geometry methods that solve the problem of motion relative to a mobile object is proposed. The efficiency of the synthesized control laws is confirmed by presented results of digital simulation.
Keywords: trajectory control, coordinates transformation, moving frame

References:
  1. Lekkas A., Fossen T. European Control Conf. (ECC), 2014, рp. 3004–3010.
  2. Lee T., Leoky M., McClamroch N. Proc. of the 49th IEEE Conf. on Decision and Control (CDC), 2010, рp. 5420–5425.
  3. Lapierre L., Soetanto D. Ocean Engineering, 2007, no. 34(11), рр. 1734–1744.
  4. Hladio A., Nielsen C., Wang D. IEEE Transact. on Control Systems Technology, 2013, no. 21(6), рр. 2380–2390.
  5. Miroshnik I.V. Soglasovannoe upravlenie mnogokanal'nymi sistemami (Coordinated Control of Multi-Channel Systems), Leningrad, 1990, 128 р. (in Russ.)
  6. Miroshnik I.V., Chepinsky S.A. 2nd IFAC Conf. on Mechatronic Systems, Berkeley, 2002, рp. 959–1004.
  7. Miroshnik I.V., Chepinsky S.A. 7th IFAC Symp. on Robot Control, Sept. 1–3, Wroclaw, Poland, 2003, рp. 105–110.
  8. Bushuev A.B., Morozov S.N., Chepinskiy S.A. Journal of Instrument Engineering, 2009, no. 11(52), рр. 50–56. (in Russ.)
  9. Fradkov A., Miroshnik I.V., Nikiforov V. O. Nonlinear and Adaptive Control of Complex Systems. Mathematics and Its Applications,Springer, 1999.
  10. Miroshnik I.V., Chepinskiy S.A. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2004, no. 3(14), рр. 5–10. (in Russ.)
  11. Kapitanyuk Yu. A., Chepinskiy S. A. Journal of Instrument Engineering, 2013, no. 4(56), рр. 65–70. (in Russ.)
  12. Kapitanyuk Y., Chepinsky S. Gyroscopy and Navigation, 2013, nо. 4(4), рр. 198–203.
  13. Kapitanyuk Y., Chepinskiy S., Kapitonov A. Proc. of the 19th IFAC World Congress, 2014.
  14. Jian Wang, Kapitanyuk Y.A., Chepinskiy S.A., Dongliang Liu, Krasnov A.J. IFAC-PapersOnLine, 2015, nо. 48-11, рр. 150–155.
  15. Van Tszyan', Krasnov A.Yu., Kapitanyuk Yu.A., Chepinskiy S.A., Kholunin S.A., Chen' Ifan', Lyu Khueymin', Khvostov D.A. Journal of Instrument Engineering, 2017, no. 8(60), рр. 704–711. (in Russ.)
  16. Krasnov A.Yu., Chepinskiy S.A., Chen' Ifan', Lyu Khueymin'. Journal of Instrument Engineering, 2017, no. 9(60), рр. 842–849. (in Russ.)