ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)

vol 63 / September, 2020

DOI 10.17586/0021-3454-2017-60-11-1070-1076

UDC 535.016


D. S. Polyakov
TMO University, Department of Laser Technologies and Instrumentation; Engineer

V. P. Veiko
ITMO University, Saint Petersburg, 197101, Russian Federation; Department Head

A. A. Shimko
RC „Optical and Laser Methods of Matter Researches“ SPbSU; Leading Specialist

N. M. Salnikov
ITMO University, Department of Laser Systems and Technologies; Student

A. A. Mikhaylova
RC „Optical and Laser Methods of Matter Researches“ SPbSU; Specialist

Read the full article 

Abstract. Specifics of morphology of microrelief formed on monocrystalline silicon surface under the action of series of nanosecond laser pulses of ytterbium fiber laser with intensities close to melting threshold are studied. It is shown that at multi-pulse irradiation the relief consist of micro cones with surface concentration depending on laser power density. The obtained microrelief has antireflective properties and its formation leads to decreasing of full reflection coefficient for 3—4 times in comparison with initial value.
Keywords: monocrystalline silicon, fiber laser, nanosecond laser pulses, micro cones, antireflective microrelief

  1. Oh J., Yuan H.-C., Branz H.M. Nature Nanotechnology, 2012, no. 7, рр.743–748.
  2. Liu al. Solar Energy Materials & Solar Cells, 2014, no. 127, рр.21–26.
  3. Nguyen K.N., Basset P., Marty F., Leprince-Wang Y., Bourouina T. J. of Applied Physics, 2013, no. 113, рр. 194903-1–194903-8.
  4. Kim J., Inns D., Fogel K., Sadana D.K.Solar Energy Materials & Solar Cells, 2010, no. 94, рр. 2091–2093.
  5. Khaydukov E.V., Khramova O.D., Rocheva V.V., Zuev D.A., Novodvorskiy O.A., Lotin A.A., Parshina L.S., Poroykov A.Yu., Timofeev M.A., Untila G. G. Journal of Instrument Engineering, 2011, no. 2(54), рр. 26–32. (in Russ.)
  6. Vorobyev A.Y., Guo C. Opt. Express, 2011, no. 19, рр. A1031–A1036.
  7. Crouch C.H., Carey J.E., Warrender J.M., Aziz M.J., Mazur E., Genin F.Y. Applied Physics Letters, 2004, no. 84, рр. 1850–1852.
  8. Kontermann S., Gimpel T., Baumann A.L., Guenther K.-M., Schade W. Energy Procedia, 2012, no. 27, рр.390–395.
  9. Sarnet T., Delaporte Ph., Zeiton D.E., Bastide S. Proc. of SPIE, 2008, no. 6881, рр. 688119-1–688119-15.
  10. Vorobyev A.Y., Guo C. Applied Surface Science, 2011, no. 257, рр.7291–7294.
  11. Voronov V.V., Dolgaev S.I., Lavrintsev S.V., Lyalin A.A., Simakin A.V., Shafeev G.A. Quantum Electronics, 2000, no. 8(30), рр. 710–714. (in Russ.)
  12. Aktsipetrov O.A., Baranova I.M., Evtyukhov K.N. Nelineynaya optika kremniya i kremnievykh nanostruktur (Nonlinear optics of silicon and silicon nanostructures), Moscow, 2012, 544 р. (in Russ.)
  13. Mansour N., Jamshidi-Ghaleh K., Ashkenasi D. J. of Laser Micro/Nanoengineering, 2006, no. 1(1), рр. 12–16.
  14. Banishev A.F. Lazerno-stimulirovannye mikrostrukturnye protsessy v kondensirovannykh sredakh (Laser-stimulated Microstructural Processes in the Condensed Environments), Extended abstract of Doctor’s thesis, Moscow, 2004, 34 р. (in Russ.)
  15. Skvortsov A.M., Khuin' K.T., Khaletskiy R.A. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2013, no. 3(85), рр. 137–143. (in Russ.)
  16. Mecherikunnel F.T., Richmond J.C. NASA Technical Memorandum 82021, 1980, 93 p.