ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)

vol 61 / APRIL, 2018

DOI 10.17586/0021-3454-2017-60-12-1138-1145

UDC 621.317.733


V. P. Arbuzov
Penza State University, Department of Automation and Remote Control; Associate Professor

M. A. Mishina
Penza State University, Department of Automation and Remote Control;

Abstract. Equivalent circuits are considered for replacement the capacitive micromechanical gyroscope. Measuring convertors circuit used in gyroscopes are analyzed. In order to exclude the influence of parasitic capacitances and resistances of the parametric transformer replacement circuit and the imperfection of the measuring transducer amplifiers, the use of time separation of the required parameters conversion channels is suggested. A microprocessor-based measuring convertor circuit implementing the method of phase separation of the channels is developed. An algorithm for computing an output signal proportional to the differential sensor informative parameter, is presented. 
Keywords: capacitive micromechanical gyroscope, equivalent circuit, informative parameter, measuring converter, error correction, phase separation of the channels

  1. Peshekhonov V.G. Gyroscopy and Navigation, 2011, no. 1, pp. 3–17. (in Russ.)
  2. Aleshin B.S., Veremeenko K.K., Chernomorskiy A. I., ed., Orientatsiya i navigatsiya podvizhnykh ob"ektov: sovremennye informatsionnye tekhnologii (Orientation and Navigation of Mobile Objects: Modern Information Technologies), Moscow, 2006, 424 р. (in Russ.)
  3. Averin I.A., Pautkin V.E. University proceedings. Volga region. Technical sciences, 2014, no. 2, pp. 24–32. (in Russ.)
  4. Bokhov O.S., Spivak A.M., Orekhov Yu.A. Nano- and Microsystems Technology, 2012, no. 12(149, pp. 55–60. (in Russ.)
  5. Arbuzov V.P. Measurement Techniques, 2007, no. 7(50), pp. 752–757. DOI: 10.1007/s11018-007-0144-x.
  6. Moiseev N.V. Mikromekhanicheskiy giroskop kompensatsionnogo tipa s rasshirennym diapazonom izmereniya (Micromechanical Gyroscope of Compensatory Type with an Extended Range of Measurement), Extended abstract of candidate’s thesis, St. Petersburg, 2015. (in Russ.)
  7. Arbuzov V.P., Vodovskova P.N., Mishina M.A. Measurement Techniques, 2014, no. 6(57), pp. 621–626. DOI: 10.1007/s11018-014-0508-y.
  8. Raspopov V.Ya. Mikromekhanicheskie pribory (Micromechanical Devices), Moscow, 2007, 400 р. (in Russ.)
  9. Belous I.A., Emel'yanov V.A., Drozd S.E. et al. Nano- and Microsystems Technology, 2008, no. 8, pp.15–19. (in Russ.)
  10. Xie H. Gyroscope and micromirror design using vertical axis CMOS-MEMS actuation and sensing, Carnegie Mellon University, 2002, 246 p.
  11. Nekrasov Ya.A, Belyaeva T.A., Belyaev Ya.V., Bagaeva S.V. Nauchnoe Priborostroenie (Scientific Instrumentation), 2008, no. 1(18), pp. 91–97. (in Russ.)
  12. Lyukshonkov R.G., Moiseev N.V.Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2011, no. 4(74), pp. 67–72. (in Russ.)
  13. Arbuzov V.P. Measurement techniques, 2009, no. 5(52), pp. 528–535. DOI: 10.1007/s11018-009-9294-3.
  14. Arbuzov V.P., Mishina M.A. Measurement techniques, 2012, no. 9(55), pp. 978–983. DOI: 10.1007/s11018-012-0085-x.
  15. Arbuzov V.P., Larkin S.E., Mishina M.A. Measurement Techniques, 2013, no. 11(55), pp. 1247–1251. DOI: 10.1007/s11018-013-0115-3.
  16. Arbuzov V.P., Mishina M.A. Measurement Techniques, 2009, no. 9(52), pp. 965−970. DOI: 10.1007/s11018-009-9377-1.
  17. Lyukshonkov R.G. Termokompensatsiya v mikromekhanicheskikh giroskopakh s konturom stabilizatsii amplitudy pervichnykh kolebaniy (Thermal Compensation in Micromechanical Gyroscopes with a Contour of Stabilization of Amplitude of Primary Fluctuations), Extended abstract of candidate’s thesis, St. Petersburg, 2016. (in Russ.)