ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

2
Issue
vol 67 / February, 2024
Article

DOI 10.17586/0021-3454-2018-61-2-100-105

UDC 621.01; 62-531.4

METHODS OF COMPENSATION OF THERMO-OPTICAL DISTORTIONS IN ACTIVE ELEMENT OF SOLID-STATE LASER

V. V. Bindyuk
ITMO University, Department of Mechatronics;


Read the full article 

Abstract. An approach to optimization of operational parameters of solid-state laser by means of maximization f compensation of thermo-optical distortions in the laser active element is discussed. Compensation of thermo-optical distortions is understood as compensation for the displacement of the laser optical axis, as well as elimination of the nonuniform distribution of the optical path length along the beam crosssection. As a cause of such phenomena, the presence of a temperature gradient in the active element of the laser is considered. The known methods for compensating the thermo-optical distortions are analyzed, a classification of the method according to the types of compensated distortions is proposed.
Keywords: solid-state laser, active element, thermos-optical distortion, adaptive optics

References:
  1. Mezenov A.V., Soms L.N., Stepanov A.I. Termooptika tverdotel'nykh lazerov (Thermooptics of Solid-State Lasers), Leningrad, 1986, 199 р. (in Russ.)
  2. Koechner W.Solid-State Laser Engineering, NY, Springer, 2006, 765 p.
  3. Kravtsov N.V. Quantum Electronics, 2001, no. 8(31), pp. 661–677. (in Russ.)
  4. Grechin S.G., Nikolaev P.P. Quantum Electronics, 2009, no. 1(39), pp. 1–17. (in Russ.)
  5. Glukhikh I.V., Kurunov R.F., Polikarpov S.S., Frolov S.V., Dimakov S.A. Technical Physics. The Russian Journal of Applied Physics, 2011, no. 8(56), pp. 1129–1134.
  6. Zenzie H.H., Knights M.G., Mosto J.R., Chicklis E.P., Perkins P.E. Scalable Diode Array Pumped Nd-Rod Laser, Technical Digest, Advanced Solid-State Lasers, 1990, рp. 257–272.
  7. Zhe Ma, Daijun Li, Jiancun Gao, Nianle Wu, Keming Du.Optics Communications, 2007, no. 275, pp.179–185.
  8. Petrushkin S.V., Samartsev V.V. Lazernoe okhlazhdenie tverdykh tel(Laser Cooling of Solid Bodies), Moscow, 2004, 224 р. (in Russ.)
  9. Nemova G., Kashyap R. SPIE, 2010, no. 7686, pp.14–20.
  10. Mu Zhou, XiaoFeng Wang, JiChun Tan. Optics Communications, 2009, no. 282, pp.1841–1846.
  11. Pat.US 5121405 А, Alignment control system for lasers, D.K. Negus, 09.06.1992.
  12. Savrasov A.N., Bindyuk V.V. Journal of Instrument Engineering, 2015, no. 12(58), pp. 973–978.(in Russ.)
  13. Scaggs M., Haas G.Laser Resonators and Beam Control XIII, 2011, no. 7913, pp.105–114.
  14. Piehler S., Thiel C., Voss A., Abdou Ah. M., Graf T.SPIE, 2012, no. 8239, pp.114–123.
  15. Graf T., Weber R., Wyss E., Weber H.P.SPIE, 2000, no. 3930, pp.123–128.
  16. Graf T., Wyss E., Roth M., Weber H.P.SPIE, 2003, no. 5137, pp.18–27.
  17. Roth M.S., Graf T., Weber H.P.SPIE, 2003, no. 5147, pp.236–242.
  18. Jang W.K., Shin S.S., Lee S.SPIE, 2003, no. 5175, pp.208–215.
  19. Jie Lia, Xiqu Chen.Optik, 2013, no. 124, pp.272–275.
  20. Kelly T.-L., Naumov A.F., Loktev M.Yu., Rakhmatulin M.A., Zayakin O.A.Optics Communications, 2000, no. 181, pp.295–301.
  21. Ono H., Yoshida M., Morisaki T.Optics Communications, 2002, no. 211, pp.309–312.
  22. Eberlea G., Chirona V., Wegenera K.Physics Procedia, 2013, no. 41, pp.441–447.
  23. Shanin O.I. Adaptivnye opticheskie sistemy v impul'snykh moshchnykh lazernykh ustanovkakh (Adaptive Optical System in Pulsed High-Power Laser Installations), Moscow, 2012, 200 p., ISBN 978-5-94836-313-4 (in Russ.)
  24. Ermolaeva E.V., Zverev V.A., Filatov A.A. Adaptivnaya optika(Adaptive Optics), St. Petersburg, 2012, 297 р. (in Russ.)
  25. Alikhanov A.N., Berchenko E.A., Kiselev V.Yu. et al. Lazerno-opticheskie sistemy i tekhnologii (Laser and Optical Systems and Technologies),2009, рр. 54–58.(inRuss.)
  26. Kanev F.Yu., Lukin V.P. Adaptivnaya optika. Chislennye i eksperimental'nye issledovaniya (Adaptive Optics. Numerical and Experimental Studies), Tomsk, 2005, 250 р. (in Russ.)
  27. Lefaudeux N., Levecq X., Dovillaire G., Ballesta J., Lavergne E., Sauvageot P., Escolano L. Nuclear Instruments and Methods in Physics Research, 2011, no. A 653, pp. 164–167.
  28. Miks A., Novak J., Novak P. Optics and Lasers in Engineering, 2011, no. 49, pp. 1268–1273.
  29. Xingkun Ma, Lei Huangn, Mali Gong, Qiao Xue. Optics Communications, 2014, no. 326, pp. 166–169.
  30. Ping Yang, Yuan Liu, Wei Yang, Ming-Wu Ao, Shi-Jie Hu, Bing Xu, Wen-Han Jiang. Optics Communications, 2007, no. 278, pp. 377–381.
  31. Aleksandrov A.G., Zavalova V.E., Kudryashov A.V., Panchenko V.Ya., Rukosuev A.L., Samarkin V.V. Photonics, 2007, no. 6, pp. 16–20. (in Russ.)
  32. Patent RU 2626732. Tverdotel'naya lazernaya ustanovka (Solid-State Laser Machine), A.N. Savrasov, V.V. Bindyuk, Published 31.07 2017. (in Russ.)