ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)

vol 63 / September, 2020

DOI 10.17586/0021-3454-2018-61-3-257-266


O. A. Perezyabov
ITMO University, Department of Technogenic Security Systems and Technologies; Post-Graduate Student

N. K. Maltseva
ITMO University, Department of Optical-Electronic Devices and Systems;

A. V. Ilinsky
S. I. Vavilov State Optical Institute; Senior Scientist

Read the full article 

Abstract. Machine vision systems are a dynamically developing field of robotics. They give the ability to detect, visualize, track and recognize objects to the manufacturing and controlling cyberphysical systems. The use of such systems along with modern image processing algorithms allows shifting part of the operator's routine duties to a robotic system, in accordance with the industry 4.0 paradigm. An important property of the machine vision system is the resolving power, which can be estimated using various parameters and characteristics. The goal of this paper is to compare existing resolution measurement methods for the machine vision systems and to discuss their advantages and drawbacks.
Keywords: resolution, machine vision, cyberphysical system, television system, MTF, image quality

  1. Kang J., Hao Q., Cheng X. Measurement and comparison of one-and two-dimensional modulation transfer function of optical imaging systems based on the random target method // Optical Engineering. 2014. Vol. 53, N 10. P. 104105—104105.
  2. Krivosheev M. I. Basics Of Television Measurements. Moscow: Radio and Communications, 1989.
  3. Wang F., Cao F., Bai T., Cao N., Liu C., Deng G. Experimental measurement of modulation transfer function of a retina-like sensor // Optical Engineering. 2014. Vol. 53, N 11. P. 113106—113106.
  4. Wang F., Cao F., Bai T., Su Y. Optimization of retina-like sensor parameters based on visual task requirements // Optical Engineering. 2013. Vol. 52, N 4. P. 043206—043206.
  5. Drynkin V. N., Falkov E. J. Determination of spatial resolution for airborne video systems // Photonics for Industrial Applications: Intern. Soc. for Optics and Photonics, 1994. P. 349—356.
  6. Boreman G. D., Yang S. Modulation transfer function measurement using three-and four-bar targets // Applied Optics. 1995. Vol. 34, N 34. P. 8050—8052.
  7. Kulikov A. N. Actual resolution of a television camera // Special Equipment. 2002. N 2. P. 20—26.
  8. How to Measure MTF and Other Properties of Lenses. Wakefield, MA, USA: Optikos Corporation, 1999. 64 p.
  9. Boreman G. D. Modulation Transfer Function in Optical and Electro-Optical Systems. Bellingham, WA: SPIE Press, 2001.
  10. Daniels A., Boreman G. D., Ducharme A. D., Sapir E. Random transparency targets for modulation transfer function measurement in the visible and infrared regions // Optical Engineering. 1995. Vol. 34, N 3. P. 860—868.
  11. Daniels A., Boreman G. D., Ducharme A. D., Sapir E. Random targets for modulation transfer function testing // Optical Engineering and Photonics in Aerospace Sensing: Intern. Soc. for Optics and Photonics, 1993. P. 184—192.
  12. Zhang X., Sha D. Modulation transfer function evaluation of charge-coupled-device camera system based on liquidcrystal display random targets // Photonics Asia 2004: Intern. Soc. for Optics and Photonics, 2005. P. 1014—1021.
  13. Levy E., Peles D., Opher-Lipson M., Lipson S. G. Modulation transfer function of a lens measured with a random target method // Applied Optics. 1999. Vol. 38, N 4. P. 679—683. 
  14. Marom E., Milgrom B., Konforti N. Two-dimensional modulation transfer function: a new perspective // Applied Optics. 2010. Vol. 49, N 35. P. 6749—6755.
  15. Haim H., Konforti N., Marom E. Optical imaging systems analyzed with a 2D template // Applied Optics. 2012. Vol. 51, N 14. P. 2739—2746.
  16. Haim H., Konforti N., Marom E. Performance of imaging systems analyzed with two-dimensional target // Applied Optics. 2012. Vol. 51, N 25. P. 5966—5972.
  17. Beeckman J., Neyts K., Vanbrabant P. J. Liquid-crystal photonic applications // Optical Engineering. 2011. Vol. 50, N 8. P. 081202—081202—17.
  18. Fernández-Oliveras A., Pozo A. M., Rubiño M. Comparison of spectacle-lens optical quality by modulation transfer function measurements based on random-dot patterns // Optical Engineering. 2010. Vol. 49, N 8. P. 083603—083603—6.
  19. Tarlykov V. A. Coherent Optics: The Manual for the Course “The Coherent Optics”. SPb: SPbSU ITMO, 2011. P. 168.
  20. Boreman G. D., Centore A. B., Sun Y. Generation of laser speckle with an integrating sphere // Optical Engineering. 1990. Vol. 29, N 4. P. 339—342.
  21. Boreman G., Dereniak E. Method for measuring modulation transfer function of charge-coupled devices using laser speckle // Optical Engineering. 1986. Vol. 25, N 1. P. 250148—250148.
  22. Sensiper M., Boreman G. D., Ducharme A. D., Snyder D. R. Modulation transfer function testing of detector arrays using narrow-band laser speckle // Optical Engineering. 1993. Vol. 32, N 2. P. 395—400.
  23. Liu M., Zhen W., Liang Y., Yu M., He P. A., Cheng C. Modulation transfer function measuring of charge-coupled devices using laser speckle // Photonics China'96: Intern. Soc. for Optics and Photonics, 1996. P. 603—610.
  24. Pozo A. M., Rubiño M. Comparative analysis of techniques for measuring the modulation transfer functions of chargecoupled devices based on the generation of laser speckle // Applied Optics. 2005. Vol. 44, N 9. P. 1543—1547.
  25. Chen X., George N., Agranov G., Liu C., Gravelle B. Sensor modulation transfer function measurement using bandlimited laser speckle // Optics Express. 2008. Vol. 16, N 24. P. 20047—20059.
  26. Backman S., Makynen A., Kolehmainen T., Ojala K. Random target method for fast MTF inspection // Optics Express. 2004. Vol. 12, N 12. P. 2610—2615.
  27. Pozo A., Ferrero A., Rubiño M., Campos J., Pons A. Improvements for determining the modulation transfer function of charge-coupled devices by the speckle method // Optics Express. 2006. Vol. 14, N 13. P. 5928—5936.  
  28. Pozo A. M., Rubiño M., Castro J. J., Salas C., Pérez-Ocón F. Measuring the image quality of digital-camera sensors by a ping-pong ball // 12th Education and Training in Optics and Photonics: Proc. Conf. Intern. Soc. for Optics and Photonics, 2014. P. 92892R—92892R—8.
  29. Kwon J. H., Rhee H. G., Ghim Y. S., Lee Y. W. Performance evaluation of MTF peak detection methods by a statistical analysis for phone camera modules // J. of the Optical Society of Korea. 2016. Vol. 20, N 1. P. 150—155.
  30. Nuzhin V., Solk S., Nuzhin A. Measuring the modulation transfer functions of objectives by means of CCD array photodetectors // J. of Optical Technology. 2008. Vol. 75, N 2. P. 111—113.
  31. Estribeau M., Magnan P. Fast MTF measurement of CMOS imagers using ISO 12333 slanted-edge methodology // Optical Systems Design: Intern. Soc. for Optics and Photonics, 2004. P. 243—252.
  32. ISO 12233: 2000. Photography-Electronic Still Picture Cameras-Resolution Measurements. International Organization for Standardization, 2000.
  33. Vlasyuk I. V. Control method of the spatial characteristics of television cameras // Metrology and Measuring Equipment in Communications. 2005. N 6. P. 13—16.
  34. Fujita H., Tsai D.-Y., Itoh T., Morishita J., Ueda K., Ohtsuka A. A simple method for determining the modulation transfer function in digital radiography // Medical Imaging, IEEE Transact. 1992. Vol. 11, N 1. P. 34—39.
  35. Buhr E., Günther-Kohfahl S., Neitzel U. Simple method for modulation transfer function determination of digital imaging detectors from edge images // Medical Imaging 2003: Intern. Soc. for Optics and Photonics, 2003. P. 877—884.
  36. Ivashkov D. V., Batranin A. V., Mamyrbaev T. A. The method of measurement of modulation transfer function before the the sampling stage and its check at Phoenix Nanotom tomograph // Information Technologies of Nondestructive Testing: Collection of scientific works of the Russian school; Conference with international participation, Tomsk, 27—30 Oct. 2015, Tomsk, 2015. P. 259—265.
  37. Gundy S., Van der Putten W., Shearer A., Buckton D., Ryder A. G. Determination of the modulation transfer function for a time-gated fluorescence imaging system // J. of Biomedical Optics. 2004. Vol. 9, N 6. P. 1206—1213.
  38. Iureva R. A., Raskin E. O., Komarov I. I., Maltseva N. K., Fedosovsky M. E. Industrial robot's vision systems // Proc.: Physics and Simulation of Optoelectronic Devices. 2016. Vol. 9742. P. 97421R—97421R—7.
  39. Roland J. K. A study of slanted-edge MTF stability and repeatability // IS&T/SPIE Electronic Imaging: Intern. Soc. for Optics and Photonics, 2015. P. 93960L—93960L—9.
  40. Wan W., Gao F., Zhao H., Zhang L., Zhou Z. Effect of noise levels of an edge image on determining the presampled modulation transfer function // SPIE BiOS: Intern. Soc. for Optics and Photonics, 2014. P. 893613—893613—7.
  41. Masaoka K., Yamashita T., Nishida Y., Sugawara M. Modified slanted-edge method and multidirectional modulation transfer function estimation // Optics Express. 2014. Vol. 22, N 5. P. 6040—6046.
  42. Rangarajan P. V., Sinharoy I., Christensen M. P., Milojkovic P. A critical review of the slanted-edge method for color SFR measurement // Imaging Systems and Applications: Optical Soc. of America, 2012. P. IW2B. 3.
  43. Hornung H. H. Objective evaluation of slanted edge charts // Proc. of SPIE. 2015. Vol. 9396. P. 939611—1.
  44. Alaruri S. D. Calculating the modulation transfer function of an optical imaging system incorporating a digital camera from slanted-edge images captured under variable illumination levels: Fourier transforms application using MatLab // Optik: Intern. Journal for Light and Electron Optics. 2016. Vol. 127, N 15. P. 5820—5824.