ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)

vol 63 / August, 2020

DOI 10.17586/0021-3454-2018-61-3-274-280

UDC 62.50


S. A. Alexandrova
Saint Petersburg National Research University of Information Technologies, Mechanics and Optics; student

O. V. Slita
Saint Petersburg National Research University of Information Technologies, Mechanics and Optics; Associate professor

Read the full article 

Abstract. Main stages of modeling a high-power DC-DC converter are considered. The investigated transducer has supply voltage varying in the range 175-320 V, and the output voltage of 610 V; it consists of a bridge inverter raising a high-frequency transformer and a diode rectifier loaded on a capacitive filter and an active load. The presence of the transformer leakage inductance makes it possible to provide soft commutation of power switches. A nonlinear model of the converter is constructed with the use of the SimLower Simulink extension package of the MatLab system, main stages of the model synthesis are presented. The main problems that can arise in the simulation and transition from the theoretical study of a high-power converter to experimental design are indicated. The main parameters of the nonlinear model are chosen, and their effect on the energy loss is analyzed. A comparative analysis of the characteristics obtained in the simulation and the characteristics of the real device is carried out.
Keywords: bridge inverter, boost converter, simulation, phase control, transformer leakage inductance, high-frequency transformer

  1. MeleshinV.N. Tranzistornayapreobrazovatel'nayatekhnika(TransistorConverterEquipment), Moscow, 2005, 628 р. (inRuss.)
  2. Meleshin V.I., Ovchinnikov D.A. Upravlenie tranzistornymi preobrazovatelyami elektroenergii (Control of Transistor Converters of Electric Power), Moscow, 2011, 576 р. (in Russ.)
  3. Koo G.B., Moon G.W., Youn M.J. IEEE Trans. Power Electron., 2004, no. 2(19), pp. 411–419.
  4. Jang Y., Jovanovic M.M. IEEE Trans. Power Electron., 2004, no. 3(19), pp. 701–708.
  5. Jang Y., Jovanovic M.M. IEEE Trans. Power Electron., 2007, no. 3(22), pp. 987–994.
  6. Jain P.K., Kang W., Soin H., Xi Y. IEEE Trans. Power Electron., 2002, no. 5(17), pp. 649–657.
  7. Jeon S.J., Cho G.H. IEEE Trans. Power Electron., 2001, no. 5(16), pp. 573–580.
  8. Sabate J.A, Vlatkovic Y., Ridel R.B., Lee F.C., Cho B. IEEE Applied Power Electronics Conference Proceedings, 1990, рp. 275–284.
  9. Erickson R., Maksimovic D. Fundamentals of power electronics, Norwell, Mass, Kluwer Academic, 2001, 885 р.
  10.  Kasatkin A.S., Nemtsov M.V. Elektrotekhnika (Electrical engineering), Moscow, 2007, 544 р. (in Russ.)
  11. Vanderson L.R., Raimundo C.S.F., Benedito A.L., Petrov C.L., Ewaldo S. 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, Montevideo, 2014, рр. 960–963.
  12. Korshunov A.I. Components & Technologies, 2006, no. 8, pp. 21–27.(in Russ.)
  13. D'yakonov V.P. Simulink: Samouchitel' (Simulink: Self-Instruction Manual),Moscow, 2013, 784 р. (in Russ.)
  14. Lur'e M.S., Lur'e O.M. Imitatsionnoe modelirovanie skhem preobrazovatel'noy tekhniki (Simulation of Schemes of the Converting Equipment), Krasnoyarsk, 2007, 138 р. (in Russ.)
  15. Borisov P.A., Tomasov V.S. Raschet i modelirovanie vypryamiteley. Chast' I (Calculation and Modeling of Rectifiers. Part I), St. Petersburg, 2009, 169 р. (in Russ.)
  16. Chen Z., Liu S., Ji F. Proceedings of the 7th International Power Electronics and Motion Control Conference (IPEMC), China, 2012, рр. 1888–1893.
  17. Petkov R. IEEE Trans. PowerElectron.,1996, рр.33–42.
  18. Baei M., Narimani M., Moschopoulos G. Journal of Power Electronics, 2014, no. 14, pp. 1–12.