ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)

vol 63 / August, 2020

DOI 10.17586/0021-3454-2018-61-4-336-341

UDC 681.7.064.454


F. V. Khoa
ITMO University, Department of Optical Information Technologies and Materials; Post-Graduate Student

P. T. Ngo
ITMO University, Department of Optical Information Technologies and Materials; Post-Graduate Student

L. A. Gubanova
ITMO University, 197101, Saint-Petersburg, Russian federation; Professor

Read the full article 

Abstract. The potentialities of a new method of optical interference coatings — the method of molecular layer deposition – are considered. The method allows for constructing structures with the layers thickness of several tens of nanometers. In the research, experimental determination of the refractive indices is performed for the two materials used for formation of broadband antireflection coating — silicon dioxide SiO2 and aluminum oxide Al2O3. A technique is presented for analysis of antireflection coatings satisfying one or more of given conditions. Such coatings can be formed from symmetrical or asymmetric cells. The resulting coatings have a low reflectance in the wavelength range 420—820 nm, and the average reflectance values of symmetric and asymmetric multilayer systems in the wavelength range comprise 1,18 and 0,78 %, respectively. It is shown that asymmetric systems usually provide a greater possibility of enlarging the enlightenment zones than symmetric systems. The effect of thickness deviations on antireflection coating properties s analyzed for the given spectral range. It is established that the molecular layer deposition method makes it possible to create low reflective coating for the wide spectral range while reducing the size of the interference system.
Keywords: molecular layer deposition, chemical deposition, enlightenment, broadband antireflective coating, multilayer system

  1. Putilin E.S. Gubanova L.A. Journal of Instrument Engineering, 2011, no. 3(54), pp. 75–81. (in Russ.)
  2.  Johnson R.W., Hultqvist A., Bent S.F. Materials Today, 2014, no. 5(15), pp. 236–246.
  3.  Efimov N.Yu., Malygin A.A. Sbornik trudov IX konkursa proektov molodykh uchenykh (Proceedings of IX Contest of Projects of Young Scientists), Moscow, 2015, рр. 14–18. (in Russ.)
  4. Putkonen M., Tuzovskiy V. Nanoindustry, 2010, no. 5, pp. 18–21. (inRuss.)
  5. Мaula J. Optics Letters, 2009, no. 53(8), pp. 53–58.
  6.  Knez M., Nielsch K., Niinisto L. Advanced Materials, 2007, no. 21(19), pp. 3425–3430.
  7. Tikhonravov A.V., Trubetskov M.K., Amotchkina T.V., Debell G., Pervak V., Sytchkova A.K., Grilli M.L., and Ristau D. Applied Optics, 2011, no. 9(50), pp. 75–85.
  8.  Groner M.D., Fabreguette F.H., Elam J.W., George S.M. Chem. Mater., 2014, no. 16, pp. 639–645.
  9. Malygin А.А. International Soros Science Education Program, 1998, no. 7, pp. 58–64. (in Russ.)
  10. Hiller D., Zierold R., Bachmann J., Malexe M., Yang Y., Gerlach J.W., Stesmans A., Jivanescu M., Muller U., Vogt J., Hilmer H., Loper P., Kunle M., Munnik F., Nielsch K., and Zacharias M. Journal of Applied Physics, 2010, no. 107, pp. 064314–1–064314-10.
  11. Dingemans. G., Helvoirt van C., Sanden van de M., Kessels W. ECS Transactions, 2011, no. 4(35), pp. 191–204.
  12. Putilin E.S. Gubanova L.A. Opticheskie pokrytiya (Optical Coating), St. Petersburg, 2016, 268 р. (in Russ.)
  13. Southwell W.H. Applied Optics, 1985, no. 4(24), pp. 457–460.
  14. Furman Sh.A. Tonkosloynye opticheskie pokrytiya (Thin-Layer Optical Coatings), Leningrad, 1977, 264 р. (in Russ.)
  15. Lovetskiy K.P., Sevast'yanov L.A., Bikeev O. N., Paukshto M.V. Matematicheskiy sintez opticheskikh nanostruktur (Mathematical Synthesis of Optical Nanostructures), Moscow, 2008, 145 р. (in Russ.)
  16. Huang Y., Pandraud G., and Sarro P.M. J. Vac. Sci. Technol. A, 2013, no. 1(31), pp. 31–39.