ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)

vol 63 / May, 2020

DOI 10.17586/0021-3454-2018-61-9-771-778

UDC 681.7.08,681.78


M. A. Kleshchenok
ITMO University, Saint Petersburg, 197101, Russian Federation; postgraduate

V. V. Korotaev
ITMO University, SaintPetersburg, 197101, Russian Federation; Department head

I. S. Nekrylov
ITMO University, Saint Petersburg, 197101, Russian Federation; postgraduate

A. N. Timofeev
ITMO University, Saint Petersburg, 197101, Russian Federation; Senior scientific researcher

E. A. Sycheva
ITMO University, Saint Petersburg, 197101, Russian Federation; Teaching and Learning Specialist

A. A. Blokhina
ITMO University, Department of Optical-Electronic Devices and Systems; Bee Pitron SP, Ltd., Design Office of Serial Production; Student,

. Joel Jose Puga Coelho Rodrigues
National Institute of Telecommunications - Inatel, Santa Rita do Sapucai, 37540-000, Brazil; ITMO University, Saint Petersburg, 197101, Russian Federation; Senior scientific researcher; professor-researcher

Read the full article 

Abstract. The way to improve optical-electronic sensors used for monitoring spatial position of elements of turbine units are considered. A scheme of sensor with two retroreflectors is proposed. The influence of sensor elements characteristics on the transformation of measuring data is analyzed. A correlation of the optical system characteristics with parameters and algorithms of the matrix photodetector is revealed. A physical model is developed based on optical-electronic sensor for monitoring object displacements was formed. Presented results of experimental studies confirm the formulated requirements for characteristics of sensors operating under workshop conditions.
Keywords: optical-electronic sensor, auto-reflection scheme, alignment control, triple prism, matrix photodetector

1. Aujla G.S. et al. IEEE Communications Magazine, 2017, no. 8(55), pp. 100–108.
2. Pena E.H.M. et al. Information Sciences, 2017, no. 420, pp. 313–328.
3. Akyildiz I.F., Su W., Sankarasubramaniam Y., Cayirci E. Comput. Netw., 2002, no. 38, pp. 393–422. 
4. Maia J.E.B., Brayner A., Rodrigues F. SIGAPP Appl. Comput. Rev., 2013, no. 13, pp. 30–41.
5. Ren Q., Liang Q. Inf. Sci., 2007, no. 177, pp. 2188–2205.
6. Konyakhin I.A., Turgalieva T.V. Journal of Optical Technology, 2013, no. 12(80), pp. 772–777. (in Russ.)
7. Pantyushin A.V., Serikova M.G., Timofeev A.N. Journal of Optical Technology, 2009, no. 8(76), pp. 507–510 (in Russ.)
8. Anisimov A.G. et al. Fifth International Symposium on Instrumentation Science and Technology. International Society for Optics and Photonics, 2009, no. 7133, pp. 71333S.
9. Patent 25677350RU, G 01 B 11/00, G01S5/00, Ustroystvo izmereniya lineynogo smeshcheniya ob”yekta (Device of Measurement of Linear Shift of an Object), Korotaev V.V., Timofeev A.N., Kleshchenok M.A., Shavrygina M.A. Published 10.11.2015, Bulletin 31. (in Russ.)
10. Kleshchenok M.A., Timofeev A.N. Sbornik trudov X Mezhdunarodnoy konferentsii „Prikladnaya optika-2012" (Proceedings of the X International Conference "Applied optics-2012"), 2012, no. 1, pp. 81–84. (in Russ.)
11. Kleshchenok M.A. et al. Optical Modelling and Design III. – International Society for Optics and Photonics, 2014, no. 9131, pp. 91311X.
12. Anisimov A.G., Timofeev A.N., Korotaev V.V. Proc. SPIE, 2011, no. 8082, pp. 80823E.
13. Schöberl M., Brückner A., Foessel S., Kaup A. J. Electron. Imaging., 2001, no. 2(21), pp. 020501-1-020501-3. DOI:10.1117/1.JEI.21.2.020501.
14. Zvereva E.N., Lebed’ko E.G. Tipovyye raschety po statisticheskim metodam obrabotki rezul’tatov izmereniy v optotekhnike (Standard Calculations for Statistical Methods of Processing of Results of Measurements in an Optics Engineering), St. Petersburg, 2016, 110 р. (in Russ.)
15. Andreev A.L., Korotaev V.V., Paszkowski D.M. Journal of Instrument Engineering, 2013, no. 10(56), pp. 88–93. (in Russ.)
16. Maraev A.A., Timofeev A.N. Proc. SPIE, 2013, no. 8788, pp. 878836.
17. Anisimov A.G., Tsyganok E.A., Konyakhin I.A. Proc. SPIE, 2010, no. 7786, pp. 77860V.