ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)

vol 64 / May, 2021

DOI 10.17586/0021-3454-2018-61-9-805-813

UDC 681.7.08, 681.786


A. P. Hoang
ITMO University, Department of Optical-Electronic Devices and Systems; Post-Graduate Student

A. A. Gorbatchev
ITMO University, Saint Petersburg, 197101, Russian Federation; Assistant

S. V. Mikheev
ITMO University, Saint Petersburg, 197101, Russian Federation; Senior Lecturer

M. A. Kleshchenok
ITMO University, Saint Petersburg, 197101, Russian Federation; postgraduate

Read the full article 

Abstract. An optoelectronic system for determining the spatial position of complex engineering structures is considered. The influence of the optoelectronic system rotation on the error in measuring displacement of reference element is analyzed. Using vector algebra and matrix analysis, a method is proposed for determining the effect of the angle of rotation of the optoelectronic system basic block and direction of the rotation axis on the coordinates of the images of reference elements located at the points of measurement of spatial coordinates of the engineering structure. Calculating the reference element image coordinates in the plane under analysis, performed in the MatLab environment for the given turning points, shows that the result of operation of such optoelectronic systems is affected not only by the angle of rotation, but also by the point at which the system rotates.
Keywords: optical-electronic deflectometer, deflection, control element, analysis field, beam deflection system, invariant system, vector analysis

1. Dzhambulatov R.G. Molodoy uchenyy, 2015, no. 10, pp. 197–200. (in Russ.)
2. (in Russ.)
3. Smirnov A.G. Sudostroenie, 2001, no. 3, pp. 45–47. (in Russ.)
4. Antonenko S.V., Linnik E.V., Golobokova N.Yu., Rybalkin Yu.G. Marine intelligent technologies, 2013, no. S2, pp. 4–8. (in Russ.)
5. Copyright certificate 1652819 USSR, G 01 b 21/00, Optiko-elektronnoye ustroystvo dlya opredeleniya lineynykh smeshcheniy ob”yekta (The Optical-Electronic Device for Determination of Linear Shifts of an Object), Yu.G. Kirchin, I.L. Mette, A.N. Timofeyev, Published 30.05.91, Bulletin 20. (in Russ.)
6. Korotaev V.V., Pantiushin A.V., Serikova M.G., Anisimov A.G. Ocean Engineering, 2016, no. 117, pp. 39–44. DOI: 10.1016/j.oceaneng.2016.03.012
7. Konyakhin I.A., Petrochenko A.V., Tolochek N.S. Proc. of SPIE, 2015, no. 9446, pp. 94460M. DOI: 10.1117/12.2087605
8. Pantyushin A.V., Serikova M.G., Timofeev A.N. Journal of Optical Technology, no. 8(76), pp. 507–510. DOI: 10.1364/JOT.76.000507
9. Patent 2445572 RU, G 01 B 11/16, G 01 B 21/32, Ustroystvo dlya kontrolya deformatsiy protyazhennogo ob”yekta (The Device for Control of Deformations of the Extended Object), V.V. Korotayev, A.N. Timofeyev, A.A. Gorbachеv, A.V. Pantyushin, A.M. Aleyev, E.S. Kuleshova, Patent application no. 2010145639/28, Published 20.03.2012, Bulletin 8. (in Russ.)
10. Gorbachev A.A., Pantyushin A.V., Serikova M.G., Korotaev V.V., Timofeev A.N. Proc. of SPIE, no. 95254, pp. 95254C. DOI: 10.1117/12.2184925
11. Timoshchuk I.N., Sukhoparov S.A. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2002, рр. 8–13. (in Russ.)
12. Burbayev A.M., Leont’yeva A.I., Odinokikh G.A., Frenkel’ D.A. Journal of Instrument Engineering, 2011, no. 11(54), pp. 72–79.
13. Gorbachev A.A. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2006, рр. 91–96. (in Russ.)
14. Pogarev G.V. Yustirovka opticheskikh priborov (Adjustment of Optical Devices), Leningrad, 1982, 237 р. (in Russ.)
15. Koniakhin I.A., Gorbachev A.A., Timofeev A.N., Musiakov V.L. Journal of Optical Technology, 2007, no. 12(74), pp. 810–814
16. Gorbachev A.A., Hoang A.P. Proc. of SPIE, 2017, no. 10329, pp. 103294F.
17. Forsyth D.A., Ponce J. Computer Vision: A Modern Approach, Pearson Education, Prеntiсe Hall, 2012, 793 p.
18. Greym I.A. Zerkal’no-prizmennyye sistemy (Mirror and Prismatic Systems), Moscow, 1981, 125 р. (in Russ.)