ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

10
Issue
vol 62 / November, 2019
Article

DOI 10.17586/0021-3454-2018-61-10-844-854

UDC 523.34:629.78:527.62

ASTRONOMICAL SYSTEM OF AUTONOMOUS NAVIGATION AND ORIENTATION OF ARTIFICIAL SATELLITES ORBITING THE MOON

V. I. Kuznetsov
A. F. Mozhaysky Military Space Academy, Department 34 of the Military Institute;


T. V. Danilova
Mozhaysky Military Space Academy, Military Institute Department; St. Petersburg;


D. M. Kosulin
A. F. Mozhaisky Military Space Academy; Senior Lecturer


M. A. Arkhipova
A. F. Mozhaisky Military Space Academy; Senior Scientist


Read the full article 

Abstract. The method of virtual measurements of zenith distances of stars, constituting the basis of astronomical on-board system of autonomous navigation and orientation (ASANO) for spacecrafts (SC) included into lunar information and navigation support system (LINSS), is described briefly. The effects of errors in the stellar catalog, and errors in measurements carried out with optical-electronic devices on the accuracy of navigational calculations of SC, are analyzed. Characteristics of accuracy of various technological cycles in ASANO functioning are presented. It is noted that the system can be used as the main or backup contour of navigation and ballistic support for the LINSS space segment and other artificial satellites orbiting the Moon. A simulation model of ASANO functioning is created, the accuracy characteristics of the system are obtained by means of modeling, and the requirements for instrumental errors of measurement and accuracy of coordinates specified in the onboard catalog of stars are justified. 
Keywords: moon exploration program, lunar information and navigation support system, onboard control complex, autonomous navigation, autonomous orientation, stellar sensors, optical-electronic devices

References:
  1. Postanovleniye Pravitel’stva RF ot 23.03.2016 № 230 "Federal’naya kosmicheskaya programma Rossii na 2016–2025 gody" (Resolution of the Government of the Russian Federation from 23.03.2016 No. 230 "The Federal Space Program of Russia for 2016–2025"). (in Russ.) 
  2. https://aboutspacejornal.net/2017/02/20/. (in Russ.) 
  3. http://novosti-kosmonavtiki.ru/mag/2015/2403/. (in Russ.) 
  4. Chebotarev V.E., Shmakov D.N., Anzhina V.A. The Research of the Science City, 2014, no. 1,  pp. 26–31. (in Russ.) 
  5. Chebotarev V.E., Kudymov V.I., Zvonar’ V.D., Vnukov A.A., Vladimirov A.V. The Research of the Science City, 2014, no. 4, pp. 14–20. (in Russ.) 
  6. Kosenko V.E., Zvonar’ V.D., Chebotarev V.E. Innovatsionnyye avtomaticheskiye kosmicheskiye apparaty dlya fundamental’nykh i prikladnykh nauchnykh issledovaniy. Aktual’nyye voprosy sozdaniya sluzhebnykh i nauchnykh sistem (Innovative Automatic Spacecraft for Basic and Applied Scientific Research. Topical Issues of Creation of Service and Scientific Systems), Proceedings of the Scientific and Technical Conference, Anapa, 06–11 September 2015, Lavochkin Association, 2015,  рр. 323–329. (in Russ.) 
  7. Gordiyenko E.S., Ivashkin V.V., Simonov A.V. Vestnik NPO im. S.A. Lavochkina, 2016, no. 4, pp. 40–54. (in Russ.) 
  8. Kuznetsov V.I., Danilova T.V. Cosmic Research, 2011, no. 6(49), pp. 538–545. 
  9. Kuznetsov V.I., Danilova T.V. Cosmic Research, 2017, no. 2(55), pp. 142–158. 
  10. Kuznetsov V.I., Danilova T.V. Teoriya i praktika navigatsionnogo obespecheniya primeneniya VS RF. Chast’ 2. Avtonomnaya astronomicheskaya navigatsiya i oriyentatsiya kosmicheskikh apparatov  (Theory and Practice of Navigation Support for the Use of the Armed Forces of the Russian Federation. Part 2. Autonomous Astronomical Navigation and Orientation of Spacecrafts), St. Petersburg, 2015, 233 р. (in Russ.)
  11.  Patent RU 2454631, Sposob avtonomnoy navigatsii i oriyentatsii kosmicheskikh apparatov na osnove virtual’nykh izmereniy zenitnykh rasstoyaniy zvezd (Way of Autonomous Navigation and Orientation of Spacecrafts on the Basis of Virtual Measurements of Zenithal Distances of Stars), V.I. Kuznetsov, T.V. Danilova, D.M. Kosulin, Priority 28.10.2010, Published 27.06.2012, Bulletin 18. (in Russ.)
  12.  Certificate on the state registration of the computer programs 2013617182 RU, Programmnyy kompleks raschetno-informatsionnogo obespecheniya avtomatizirovannoy sistemy nauchnykh issledovaniy metodov i algoritmov avtonomnoy navigatsii i oriyentatsii kosmicheskikh apparatov (ASNI 1.1) (Software Complex of Calculation and Information Support of the Automated System of Scientific Research of Methods and Algorithms of Autonomous Navigation and Orientation of Spacecraft (ASNI 1.1)),  V.I. Kuznetsov, T.V. Danilova, M.A. Arkhipova, Priority 19.06.2013, Published 20.09.2013. (in Russ.) 
  13. Certificate on the state registration of the computer programs 2013617181 RU, Programmnyy modul’ avtonomnogo opredeleniya parametrov orbity i oriyentatsii korpusa kosmicheskogo apparata v prostranstve pri otsutstvii apriornoy informatsii v avtomatizirovannoy sisteme nauchnykh issledovaniy problem orbital’nogo dvizheniya (ASNI 2.0) (The Program Module of Autonomous Determination of Parameters of an Orbit and Orientation of the Case of the Spacecraft in Space in the Absence of Aprioristic  Information in the Automated System of Scientific Research of Problems of the Orbital Movement  (ASNI 2.0)), V.I. Kuznetsov, T.V. Danilova, M.A. Arkhipova, Priority 19.06.2013, Published 05.08.2013. (in Russ.) 
  14. Kuznetsov V.I., Silov V.N., Danilova T.V. Journal of Instrument Engineering, 2003, no. 4(46), pp. 43–50. (in Russ.) 
  15. Danilova T.V. Formirovaniye optimal’noy programmy izmereniy pri minimizatsii maksimal’noy dispersii dlya neodnorodnogo sostava izmereniy. Sbornik algoritmov i programm tipovykh zadach (Formation of the Optimal Measurement Program while Minimizing the Maximum Dispersion for Heterogeneous Composition of Measurements. Collection of Algorithms and Programs of Typical Tasks), St. Petersburg, 2007, no. 26, pp. 410–416. (in Russ.)