ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

10
Issue
vol 67 / October, 2024
Article

DOI 10.17586/0021-3454-2019-62-1-50-55

UDC 004.912

MERGING OF SEMANTIC NETWORKS BASED ON EQUIVALENCE OF TOPOLOGIES

A. E. Pismak
ITMO University, Saint Petersburg, 197101, Russian Federation; student


S. V. Klimenkov
ITMO University, Saint Petersburg, 197101, Russian Federation; Assistant


E. A. Tsopa
ITMO University, Saint Petersburg, 197101, Russian Federation; Assistant


A. Y. Slobodkin
ITMO University; Department of Computer Science; Assistant;


V. V. Nikolaev
ITMO University; Department of Computer Science;


Read the full article 

Abstract. A method realizing of semantic graphs merging algorithm based on features of their topologies is presented. The method application results in creation of a semantic network of high connectedness formed from two heterogeneous sources.
Keywords: semantic networks, graphs, thesaurus, semantic network topology, Wiktionary, RuThes

References:
  1. Latu M.N. Issues of cognitive linguistics, 2016, no. 4, pp. 142–149. (in Russ.)
  2. Mitrofanova O.A., Konstantinova N.S., 2008, 54 р. https://nsu.ru/xmlui/handle/nsu/8979. (in Russ.)
  3. Osika V.P., Klimenkov S., Tsopa E., Pismak A., Nikolaev V., Yarkeev A. Proceedings of the 9th Inter-national Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Man-agement (KDIR), 2017, vol. 2, pp. 239–245.
  4. Pis'mak A.E., Kharitonova A.E., Tsopa E.A., Klimenkov S.V. Programmnye produkty i sistemy, 2016, no. 3, рр. 74–78. (in Russ.)
  5. Lukashevich N.V., Dobrov B.V., Chetverkin I.I. Mezhdunarodnaya konferentsiya po komp’yuternoy lingvistike Dialog-2014 (International Conference on Computational Linguistics Dialogue-2014), 2014, рр. 340–349. https://pdfs.semanticscholar.org/270d/68ded1bfc3bc36f8e21724e1a992374f79a0.pdf. (in Russ.)
  6. Pis'mak A.E., Kharitonova A.E., Tsopa E.A., Klimenkov S.V. Scientific and Technical Journal of In-formation Technologies, Mechanics and Optics, 2016, no. 2(16), pp. 324–330. (in Russ.)
  7. Raygorodskiy A.M. Modeli sluchaynykh grafov (Random Graph Models), Moscow, 2017. (in Russ.)