ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2019-62-2-128-135

UDC 616.31-085: 681.787.7

APPLICATION OF SCANNING INTERFEROMETRY OF LOW-COHERENCE LIGHT TO MEASURE DEMINERALIZED AREAS OF THE ENAMEL UNDER THE GUM in vivo

V. T. Prokopenko
ITMO University, Saint Petersburg, 197101, Russian Federation; Professor


E. E. Majorov
Saint-Petersburg state university of aerospace instrumentation; Associate professor


L. I. Shalamay
Pavlov First St. Petersburg State Medical University, Department of Therapeutic Dentistry and Periodontology ;


M. V. Khokhlova
A. F. Mozhaisky Military Space Academy, Department of Physics; Associate Professor


M. S. Turovskaya
University at the EurAsEC Inter-Parliamentary Assembly, Department of Economics and Finance ;


A. S. Ushakova
St. Petersburg University of Management Technologies and Economics, Department of Information Technology and Mathematics;


A. V. Dagaev
Ivangorod Humanitarian and Technical Institute, Branch of St. Petersburg State University of Aerospace Instrumentation, Department of Mathematics, Informatics and Information Customs Technologies; Associate Professor


Read the full article 

Abstract. A low-coherence interferometer of scanning type for tomographic studies in therapeutic dentistry is presented. The features of low-coherence interferometry, which is a unique tool for the determination and analysis of demineralized areas of enamel under the gum in vivo, are considered. It is shown that at a normal incidence of probing radiation at depths from 2000 to 3000 µm, it is possible to measure enamel demineralization with an error of not more than 2.1 µm. The obtained tomograms make it possible to detect in vivo demineralization of enamel under the gum at an early stage of its formation.
Keywords: coherence, Michelson interferometer, enamel, demineralization, radiation wavelength, cutter, gums

References:
  1. Dresel T., Hausler G., Venzke H. Appl. Optics, 1992, no. 7(31), pp. 919–925.
  2. Hasier G., Herrmann F. Appl. Optics, 1988, no. 22(27), pp. 4631–4637.
  3. Zakhar’yevskiy A.N. Interferometry (Interferometers), Moscow, 1952, 296 р. (in Russ.)
  4. Gu F., Hung Y., Chen F. Appl. Optics, 1994, no. 23(33), pp. 5308–5317.
  5. Gurov I.P., Gang L. Proc. SPIE, 1996, no. 2899, pp. 230–239.
  6. Kolomiytsev Yu.V. Interferometry (Interferometers), Leningrad, 1976, 296 р. (in Russ.)
  7. Fracon M. La Granularite Laser (Spekle) et ses Applications en Optique, Paris, NY, Barcelona, Milan, Masson, 1978.
  8. Majorov E.E., Prokopenko V.T., Ushveridze L.A. Instruments, 2012, no. 7(145), pp. 23–25. (in Russ.)
  9. Majorov E.E., Prokopenko V.T., Ushveridze L.A. Scientific and Technical Journal of Information Tech-nologies, Mechanics and Optics, 2012, no. 2((78), pp. 13–16. (in Russ.)
  10. Maiorov E.E., Prokopenko V.T. Biomedical Engineering, 2012, no. 3(46), pp. 109–111.
  11. Majorov E.E., Prokopenko V.T. Nauchnoe Priborostroenie (Scientific Instrumentation), 2013, no. 2(23), pp. 38–46. (in Russ.)
  12. Majorov E.E. Scientific review, 2013, no. 9, pp. 329–332. (in Russ.)
  13. Maiorov E.E., Prokopenko V.T., Sherstobitova A.S. Journal of Optical Technology, 2013, no. 3(80), pp. 162–165.
  14. Majorov E.E., Prokopenko V.T. Interferometriya diffuzno otrazhayushchikh ob"ektov (Interferometry of Diffusely Reflecting Objects), St. Petersburg, 2014, 193 р. (in Russ.)
  15. Maiorov E.E., Prokopenko V.T., Ushveridze L.A. Biomedical Engineering, 2014, no. 6(47), pp. 304–306.
  16. Majorov E.E., Mashek A.Ch., Udakhina S.V., Tsygankova G.A., Khaydarov G.G., Chernyak T.A. Instruments, 2015, no. 11(185), pp. 26–31. (in Russ.)
  17. Majorov E.E., Mashek A.Ch., Udakhina S.V., Tsygankova G.A., Khaydarov G.G., Chernyak T.A. Nauchnoe Priborostroenie (Scientific Instrumentation), 2015, no. 4(25), pp. 61–66. (in Russ.)
  18. Majorov E.E., Dagaev A.V., Ponomarev S.E., Chernyak T.A. Nauchnoe Priborostroenie (Scientific Instrumentation), 2017, no. 2 (27), pp. 32–40. (in Russ.)
  19. Majorov E.E., Dagaev A.V., Ponomarev S.E. Instruments, 2017, no. 6, pp. 25–28. (in Russ.)
  20. Majorov E.E., Prokopenko V.T., Mashek A.Ch., Tsygankova G.A., Kurlov A.V., Khokhlova M.V., Kirik D.I., Kapralov D.D. Мeasurement Techniques, 2017, no. 10, pp. 33–37. (in Russ.)
  21. Majorov Е.Е., Mashek A.Ch., Tsygankova G.A., Polikarpova A.A., Konstantinova A.A., Khokhlova M.V. News of the Tula State University. Technical Sciences, 2018, no. 4, pp. 387–397. (in Russ.)
  22. Majorov Е.Е., Mashek A.Ch., Tsygankova G.A, Abramyan V.K., Khaydarov G.G., Khaydarov A.G., Konstantinova A.A. Izvestiya SFedU. Engineering Sciences, 2018, no. 2, pp. 221–233. (in Russ.)
  23. Prokopenko V.T., Majorov E.E., Mashek A.Ch., Tsygankova G.A., Zharkova T.V., Khokhlova M.V., Pi-sareva E.A. Journal of Instrument Engineering, 2018, no. 3(61), pp. 167–172. (in Russ.)