ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)

vol 64 / March, 2021

DOI 10.17586/0021-3454-2019-62-2-142-149

UDC 535.212


V. Y. Khramov
ITMO University; Professor

S. V. Gagarsky
ITMO University, Saint Petersburg, 197101, Russian Federation; leading engineer

A. N. Sergeev
ITMO University, Saint Petersburg, 197101, Russian Federation; assistant

R. M. Akhmadullin
ITMO University, Department of Laser Technologies and Systems;

Read the full article 

Abstract. Several features of HfO2/SiO2 and Ta2O5/SiO2 coatings deposited on absorbing substrate of single-crystal silicon carbide (SiC) are revealed to cause a decrease in their laser-induced damage threshold. It has been experimentally shown that in the presence of transverse micro displacement of the beam during the measurements, the radiation strength of the sample decreases in 2–3 times. Using the heat transfer equation and the finite element method in the CAE (computer-aided engineering) system, the effects of laser radiation with transverse beam displacement is simulated, and the dynamics of temperature changes and induced thermal stresses inside the samples are evaluated.
Keywords: laser induced damage of reflecting mirrors, dielectric coatings, absorbing substrate, laser induced damage threshold, monocrystalline silicon carbide, thermal stress

  1. Matson L.E. and Mollenhauer D. 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652), 2003, vol. 4, рp. 4_1681-4_1697.
  2. Larruquert J.I., Pérez-Marín A.P., García-Cortés S., Rodríguez-de Marcos L., Aznárez J.A., and Méndez J.A. J. Opt. Soc. Am. A, 2011, no. 11(28), pp. 2340.
  3. Glebov L.B. Laser-Induced Damage in Optical Materials, 2002, vol. 4679, pp. 321–331.
  4. Gagarskiy S.V., Ermolayev V.S., Sergeyev A.N., Puzyk M.V. Journal of Instrument Engineering, 2012, no. 7(55), pp. 80–85. (in Russ.)
  5. Gagarskiy C.V., Prikhod’ko K.V. Tez. XXXVI nauchno-tekhnicheskoy konferentsii professorsko-prepodavatel’skogo sostava SPbGITMO(TU) (Theses of the XXXVI Scientific and Technical Confe-rence of the Faculty of SPbGITMO(TU)), 2007. (in Russ.)
  6. Togatov V.V., Gagarskiy S.B., Gnatyuk P.A., Cherevko Yu.I. Instruments and Experimental Techniques, 2007, no. 2, pp. 158–159. (in Russ.)
  7. Liu J., Lu J., Ni X., Dai G., Zhang L. Chinese Opt. Lett., 2010, no. 8(8), pp. 1000–1003.
  8. Kartashov È.M., Remizova O.I. Matematicheskoe Modelirovanie (Mathematical Models and Computer Simulations), 2005, no. 4(17), pp. 81–95. (in Russ.)
  9. Wood D. L., Nassau K., Kometani T.Y., and Nash D.L. Appl. Opt., 1990, no. 4(29), pp. 604.
  10. Natoli J.-Y., Gallais L., Akhouayri H., and Amra C. Appl. Opt., 2002,vol. 41, no. 16, p. 3156.
  11. Hinz M., Marti O., Gotsmann B., Lantz M.A., and Dürig U. Appl. Phys. Lett., 2008, vol. 92, pp. 043122-1–043122-3.
  12. Crooks D.R.M. et al. Class. Quantum Grav., 2006, vol. 23, pp. 4953–4965.
  13. Dole S.L., Hunter O., and Wooge C.J. J. Am. Ceram. Soc., 1977, no. 11–12(60), pp. 488–490.
  14. Papernov S., Schmid A.W., Oliver J.B., and Rigatti A.L. Proc. SPIE, 2007, vol. 6720, p. 67200G.
  15. Curtis C.E., Doney L.M., and Johnson J.R. J. Am. Ceram. Soc., 1954, no. 10(37), pp. 458–465.
  16. Gao L., Lemarchand F., and Lequime M. J. Eur. Opt. Soc. Rapid Publ., 2013, vol. 8, рp. 13010.
  17. Gao L., Lemarchand F., and Lequime M. Opt. Express, 2012, no. 14(20), pp. 15734.
  18. Glebov L. Volume Holographic Elements for Spectroscopy and Laser Applications, CREOL the Col-lege of Optics and Photonics University of Central Florida, March 10, 2016 Orlando, FL”.
  19. Venus G.B., Sevian A., Smirnov V., and Glebov L.B. SPIE, 2005, vol. 5711, pp. 166–176.