ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

5
Issue
vol 62 / May, 2019
Article

DOI 10.17586/0021-3454-2019-62-2-163-177

UDC 621.373.826:535.21

FORMATION OF VAPOR CAVITY UNDER HYDROACOUSTIC TREATMENT OF BIOLOGICAL TISSUE IN LIQUID BY MICROSECOND PULSES OF Er,Yb:Glass-LASER RADIATION

A. V. Belikov
ITMO University, Saint Petersburg, 197101, Russian Federation; Full Professor


S. V. Gagarsky
ITMO University, Saint Petersburg, 197101, Russian Federation; leading engineer


A. M. Zagorulko
St. Petersburg Branch of the S. Fyodorov Eye Microsurgery Federal State Institution; Medical Director


A. N. Sergeev
ITMO University, Saint Petersburg, 197101, Russian Federation; assistant


N. S. Smirnov
ITMO University, Saint Petersburg, 197101, Russian Federation; postgraduate


Abstract. Results of a study of dynamics of the shape and size of vapor-gas cavities excited by laser pulses on ytterbium-erbium glass with a fiber output at a wavelength of 1.54 µm in the free volume of liquid (water), as well as near boundary of a solid (quartz) and elastic object (lens of the eye) are presented. The influence of temporal structure of the pulses of total duration in microseconds on appearance and process of formation of the vapor cavity in liquid is investigated. It is found that at a fixed pulse energy in the free volume of the liquid, an increase in the power of the "leading" peak in the laser pulse leads to a decrease in the threshold of formation and an increase in the maximum volume of the cavity. In the free volume of the liquid with a total laser pulse duration of 3–3.5 µs and energy of the order of E = 100 mJ, the maximum volume of the vapor-gas cavity reaches 7 mm3 at the laser radiation intensity of the order of 108 W/cm2 at the output end of the optical fiber at the time of the action of the leading peak. The maximum volume of the vapor-gas cavity is achieved within 165 ± 5 µs from the beginning of the laser pulse, and the cavity collapse occurs after 300 ± 10 µs. Reducing the intensity while maintaining the total energy of the pulse leads to a slowdown in the growth of the vapor-gas cavity and a decrease in its maximum volume. Near the boundary of the solid, the vapor-gas cavity is deformed and acquires a smooth hemispherical shape, its volume decreases, and the lifetime increases to 350 ± 10 µs. Near the border of the elastic body, the vapor-gas cavity is also deformed, acquires a hemispherical shape, but in the collapse phase near the lens, micro bubbles of 40–120 µm size are formed on the surface of the cavity. Near the cataract lens, the time to reach the maximum volume of the cavity and the time of its life are reduced compared to the formation near the boundary of the solid and in the free volume of water, and the lens of the eye is destroyed.
Keywords: ytterbium-erbium glass laser, microsecond pulses, vapor-gas cavity, water, fiber, biotissues

References:
  1. Hale G. M., Querry M. R. Optical constants of water in the 200-nm to 200-μm wavelength region // Appl. Opt. 1973. Vol. 12, N 3. P. 555—563. DOI: 10.1364/AO.12.000555.
  2. Беликов А. В., Гагарский С. В., Губин А. Б., Вайнер C. Я., Сергеев А. Н., Смирнов С. Н. Субджоульный лазер на иттербий-эрбиевом стекле с диодной накачкой и модуляцией полезных потерь резонатора для экстракции катаракты // Научно-технический вестник информационных технологий, механики и оптики. 2015. Т. 15, № 6. С. 1021—1029. DOI: 10.17586/2226-1494-2015-15-6-1021-1029.
  3. Беликов А. В., Гагарский С. В., Сергеев А. Н., Смирнов С. Н. Исследование гидродинамических процессов в жидкости при воздействии мощных микросекундных импульсов Yb,Er:Glass-лазера // Изв. вузов. Приборостроение. 2017. Т. 60, № 4. С. 367—374. DOI: 10.17586/0021-3454-2017-60-4-367-374.
  4. Vogel A., Engelhardt R., Behnle U., Parlitz U. Minimization of cavitation effects in pulsed laser ablation illustrated on laser angioplasty // Appl. Phys. B. 1996. Vol. 62, is. 2. P. 173—182. DOI: 10.1007/BF01081122.
  5. Vogel A., Schmidt P., Flucke B. Minimization of thermo-mechanical side effects in IR ablation by use of Q-switched double pulses // Proc. SPIE. 2001. Vol. 4257A. P. 1—8. DOI: 10.1117/12.434703.
  6. Vogel A., Schmidt P., Flucke B. Minimization of thermomechanical side effects and increase of ablation efficiency in IR ablation by use of multiply Q-switched laser pulses // Proc. SPIE. 2002. Vol. 4617. P. 105—111. DOI: 10.1117/12.472512.
  7. Lu T., Xiao Q., Xia D., Ruan K., Li Z. Cavitation effect of holmium laser pulse applied to ablation of hard tissue underwater // J. of Biomedical Optics. 2010. Vol. 15, is. 4. P. 048002. DOI: 10.1117/1.3470092.
  8. Zhang X., Chen C., Chen F., Zhan Z., Xie S., Ye Q. In vitro investigation on Ho:YAG laser-assisted bone ablation underwater // Lasers Med Sci. 2016. Vol. 1, is. 5. P. 891—898. DOI: 10.1007/s10103-016-1931-x 891-898.
  9. Brujan E.-A., Nahen K., Schmidt P., Vogel A. Dynamics of laser-induced cavitation bubbles near an elastic boundary // J. Fluid Mech. 2001. Vol. 433. P. 251—281. DOI: 10.1063/1.1309246.
  10. Brujan E.-A., Nahen K., Schmidt P., Vogel A. Dynamics of laser-induced cavitation bubbles near elastic boundaries: influence of the elastic modulus // J. Fluid Mech. 2001. Vol. 433. P. 283—314. DOI: 10.1017/S0022112000003335.
  11. Gregorčič P., Lukač N., Možina J., Jezeršek M. In vitro study of the erbium:yttrium aluminum garnet laser cleaning of root canal by the use of shadow photography // J. of Biomedical Optics. 2016. Vol. 21, is. 1. P. 015008. DOI: 10.1117/1.JBO.21.1.015008.
  12. Asshauer T., Delacrétaz G., Jansen E. D., Welch A. J., Frenz M. Acoustic transients in pulsed holmium laser ablation: effects of pulse duration // Proc. SPIE. 1995. Vol. 2323. P. 117—129. DOI: 10.1117/12.199189.
  13. Jansen E. D., Asshauer T., Frenz M., Motamedi M., Delacretaz G., Welch A. J. Effect of pulse duration on bubble formation and laser-induced pressure waves during holmium laser ablation // Lasers in Surgery and Medicine. 1996. Vol. 18. P. 278—293. DOI: 10.1002/(SICI)1096-9101(1996)18:3<278::AID-LSM10>3.0.CO;2-2.
  14. Frenz M., Pratisto H., Konz F., Jansen E. D., Welch A. J., Weber H. P. Comparison of the effects of absorption coefficient and pulse duration of 2.12-um and 2.79-um radiation on laser ablation of tissue // IEEE J. of Quantum Electronics. 1996. Vol. 32, N 12. P. 2025—2036. DOI: 10.1109/3.544746.
  15. Gregorčič P., Jezeršek M., Možina J. Optodynamic energy-conversion efficiency during an Er:YAG-laser-pulse delivery into a liquid through different fiber-tip geometries // J. of Biomedical Optics. 2012. Vol. 17, is. 7. P. 075006. DOI: 10.1117/1.JBO.17.7.075006.
  16. Копаева В. Г., Андреев Ю. В. Лазерная экстракция катаракты. М.: Офтальмология, 2011. 262 с.
  17. Комплекс для лазерной экстракции катаракт РАКОТ-6М
  18. Bach T., Herrmann T. R. W., Haecker A., Michel M.S., Gross A. Thulium:yttrium-aluminium-garnet laser prostatectomy in men with refractory urinary retention // BJU Intern. 2009. Vol. 104, is. 3. P. 361—364. DOI: 10.1111/j.1464-410X.2009.08412.x.
  19. Karabyt M. M., Belikov A. V., Skripnik A. V. et al. Laser microablative tunnel formation to initiate alveolar bone regeneration. Pilot ex vivo study. // Sovremennye Tehnologii v Medicine. 2013. Vol. 5, N 4. P. 6—18.
  20. Altshuler G. B., Belikov A. V., Shatilova K. V., Yaremenkoc A. I., Zernitskiyc A. Y., Zernitckaia E. A. Pilot in vivo animal study of bone regeneration by fractional Er: YAG-laser // Proc. SPIE. 2016. Vol. 9917. P. 991702. DOI: 10.1117/12.2229391.
  21. Shangguan H. Q., Casperson L. W., Shearin A., Gregory K. W., Prahl S. A. Drug delivery with microsecond laser pulses into gelatin // Applied Optics. 1996. Vol. 35, N 19. P. 3347—3357. DOI: 10.1364/AO.35.003347.
  22. Gagarskii S. V., Galagan B. I., Denker B. I. et al. Diode-pumped ytterbium-erbium glass microlasers with optical Q-switching based on frustrated total internal reflection // Quantum Electronics. 2000. Vol. 30, N 1. P. 10—12. DOI: 10.1070/QE2000v030n01ABEH001647.
  23. Bufetova G. A., Nikolaev D. A., Seregin V. F., Shcherbakov I. A., Tsvetkov V. B. Long pulse lasing with Q-switching by FTIR shutter // Laser Physics. 1999. Vol. 9, N 1. P. 314—318.
  24. Денкер Б. И., Осико В. В., Сверчков С. Е. и др. Высокоэффективные лазеры на эрбиевом стекле с модуляцией добротности затвором на основе нарушенного полного внутреннего отражения // Квантовая электроника. 1992. Т. 19, № 6. С. 544—547.
  25. Buratto L., Apple D. J., Werner L., Zanini M. Phacoemulsification: Principles and Techniques. Slack Incorporated, 2003. 768 p.
  26. Isselin J.-C., Alloncle A.-P., Autric M. On laser induced single bubble near a solid boundary: Contribution to the understanding of erosion phenomena // J. Appl. Phys. 1998. Vol. 84, is. 10. P. 5766. DOI: 10.1063/1.368841.
  27. Shaw S. J., Schiffers W.P., Gentry T. P., Emmony T. P. The interaction of a laser-generated cavity with a solid boundary // J. Acoust. Soc. Am. 2000. Vol. 107, N 6. P. 3065—3072.
  28. Yang Y. X., Wang Q. X., Keat T. S. Dynamic features of a laser-induced cavitation bubble near a solid boundary // Ultrasonics Sonochemistry. 2013. Vol. 20, is. 4. P. 1098—1103. DOI: 10.1016/j.ultsonch.2013.01.010.
  29. Sugimoto Y., Yamanishi Y., Sato K., Moriyama M. Measurement of bubble behavior and impact on solid wall induced by fiber-holmium:YAG laser // J. of Flow Control, Measurement & Visualization. 2015. Vol. 3, N 4. P. 135—143. DOI: 10.4236/jfcmv.2015.34013.
  30. Palanker D., Turovets I., Lewis A. Dynamics of ArF excimer laser-induced cavitation bubbles in gel surrounded by a liquid medium // Lasers in Surgery and Medicine. 1997. Vol. 21, is. 3. P. 294—300. DOI: 10.1002/(SICI)1096-9101(1997)21:3<294::AID-LSM10>3.0.CO;2-D.
  31. Vogel A., Brujan E.-A., Schmidt P., Nahen K. Interaction of laser-produced cavitation bubbles with an elastic tissue model // Proc. SPIE. 2001. Vol. 4257. P. 167—177. DOI: 10.1117/12.434701.