ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

8
Issue
vol 63 / August, 2020
Article

DOI 10.17586/0021-3454-2019-62-2-185-191

UDC 004.6

DEVELOPMENT OF SOFTWARE TOOLS FOR PREPARATION OF STATISTICAL DATA SAMPLES OF ELECTROPHYSIOLOGY OF GASTROINTESTINAL TRACT

A. I. Popov
M. V. Lomonosov Northern (Arctic) Federal University, Department of Applied Informatics; Associate Professor


Abstract. Automation of diseases diagnostics is an actual direction of development of electrophysiological studies of human digestive system. The relevant research work needs to include the procedures of com-puter analysis of experimental data arrays. However, there are no technological solutions for organized storing and accumulation of such arrays. An architecture of software system for formation of data ware-houses of electrogastrography and electrogastroenterography from different types of sources and preparation of statistical samples for subsequent computer processing is proposed. The architecture is based on the design pattern of Mediating-controller MVC, which provides a high degree of decomposition of the system. The system developed in Python 3 is freely distributed.
Keywords: software system architecture, design pattern, model–view–controller, database, research automation, electrophysiology, gastro-intestinal tract

References:
  1. Yin J., Chen J.D.Z. Journal of Neurogastroenterology and Motility, 2013, no. 1(19), pp. 5–17, DOI: 10.5056/jnm.2013.19.1.5.
  2. Riezzo G., Russo F., Indrio F. BioMed research international, 2013, рp. 1–14, DOI: 10.1155/2013/282757.
  3. Arbizu R.A., Rodriguez L. Pediatric Neurogastroenterology, Springer, Cham, 2017, рр. 169–179, DOI: https://doi.org/10.1007/978-1-60761-709-9_15.
  4. Kosenko P.M., Vavrinchuk S.A. Electrogastroenterography in patients with complicated peptic ulcer, Yelm, USA, Science Book Publishing House, 2013, 164 p.
  5. http://www.gastroscan.ru/physician/egg/.
  6. Popov A.I., Svin’in S.F. Trudy SPIIRAN (SPIIRAS Proceedings), 2017, no. 50, pp. 93–111, DOI: http://dx.doi.org/10.15622/sp.50.4. (in Russ.)
  7. Sharma P., Makharia G., Yadav R., Dwivedi S.N., Deepak K.K. Journal of Smooth Muscle Research, 2015, no. 51, pp. 50–57, DOI: 10.1540/jsmr.51.50.
  8. Kayar Y., Danaliouglu A., Al Kafee A., Okkesim, S., Senturk H. Turk J. Gastroenterol, 2016, no. 27, pp. 415–420, DOI: 0.5152/tjg.2016.16281.
  9. Kim H.Y., Park S.J., Kim Y.H. Journal of gastric cancer, 2014, no. 1(14), pp. 47–53, DOI: 10.5230/jgc.2014.14.1.47.
  10. Popov A.I. Journal of Instrument Engineering, 2018, no. 1(61), pp. 84–89, DOI: 10.17586/0021-3454-2018-61-1-84-89. (in Russ.)
  11. EGEGrouper, https://pypi.python.org/pypi/EGEGrouper.
  12. MVC, http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html.
  13. Kurniawan A.K.A., Hendradjaya B. Intern. Conf. of Advanced Informatics: Concept, Theory and Application (ICAICTA), IEEE, 2014, рр. 117–122, DOI: 10.1109/ICAICTA.2014.7005926.
  14. Foster E.C., Shripad G. Database Systems, Apress, Berkeley, CA, 2016, рр. 391–401, DOI: https://doi.org/10.1007/978-1-4842-1191-5_20.
  15. Python 3, https://pypi.python.org/.
  16. Introducing JSON, http://www.json.org/.