ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

10
Issue
vol 62 / November, 2019
Article

DOI 10.17586/0021-3454-2019-62-3-266-271

UDC 535.3:616-005

DIAGNOSTICS OF PHYSIOLOGICAL PROCESSES IN LIVING TISSUES BY THE METHOD OF OPTICAL VISUALIZATION OF BLOOD PULSATION

A. V. Belaventseva
Institute of Automation and Control Processes, Far Eastern Branch of the RAS, Department of Optoelectronic Methods of Investigating Gaseous and Condenses Media; Engineer;


Y. N. Kulchin
Eastern Branch of the RAS, Department of Optoelectronic Methods of Investigating Gaseous and Condenses Media; Far Eastern Federal University;


.
Institute of Automation and Control Processes, Far Eastern Branch of the RAS, Department of Optoelectronic Methods of Investigating Gaseous and Condenses Media; Far Eastern Federal University; Leading Researcher;


T. S. Zaporozhets
Dr. Sci., Professor; G. P. Somov Scientific Research Institute of Epi-demiology and Microbiology; Deputy Director for Scientific Work ;


E. V. Persiyanova
G. P. Somov Scientific Research Institute of Epidemiology and Microbiology, Laboratory of Immunology;


L. P. Lyakhova
PhD, Associate Professor; Far Eastern Federal University, Department of General and Experimental Physics;


A. A. Kamshilin
ITMO University, Department of Computer Photonics and Video-informatics ;


Read the full article 

Abstract. The possibility of using visualization of blood pulsations for studying processes of thermal relaxa-tion in human living tissues is investigated. The blood pulsation amplitude (BPA) in a tissue is experimentally demonstrated to depend on thermal effect on the tissue: cooling a tissue leads to a drop in BPA, and the process of heating a tissue is accompanied by its growth. The increase in the BPA rate is shown to be an individual characteristic of the subject, and therefore can serve as a parameter of vasomotor reactivity of vessels with temperature changes.
Keywords: microcirculation, thermoregulation, photoplethysmography, blood pulsations, perfusion of blood

References:
  1. Yamamoto-Suganuma R. and Aso Y. Diabetic Medicine, 2009, vol. 26, рр. 83–88. DOI:10.1111/j.1464-5491.2008.02609.x.
  2. Kurvers H.A.J.M., Jacobs M.J.H.M., Beuk R. J., van den Wildenberg F.A.J.M., Kitslaar P.J.E.H.M. et al. Arch. Neurol., 1996, vol. 53, рр. 58–65.
  3. Draijer M., Hondebrink E., van Leeuwen T. and Steenbergen W. Lasers Med. Sci., 2009, vol. 24, рр. 639–651. DOI:10.1007/s10103-008-0626-3.
  4. Takano C. and Ohta Y. Med. Eng. Phys., 2007, vol. 29, рр. 853–857. DOI:10.1016/j.medengphy.2006.09.006.
  5. Kamal A.A.R., Harness J.B., Irving G. and Mearns A.J. Comput. Methods, Programs Biomed., 1989, vol. 28, рр. 257–269.
  6. Shelley K.H. Anesth. Analg., 2007, vol. 105, рр. 31–36. DOI: 10.1213/01.ane.0000269512.82836.c9.
  7. Bandini A., Orlandi S., Manfredi C., Evangelisti A., Barrella M. et al. Microvasc. Res., 2013, vol. 88, рр. 42–47. DOI: org/10.1016/j.mvr.2013.03.005.
  8. Roustit M., Blaise S., Millet C., Cracowski J.L. Microvasc. Res., 2010, vol. 79, рр. 102–108. DOI:10.1016/j.mvr.2010.01.001.
  9. Daly S.M., Leahy M.J. J. Biophotonics, 2013, vol. 6, рр. 217–-255. DOI:10.1002/jbio.201200071.
  10. Kamshilin A.A., Miridonov S.V., Teplov V.Y., Saarenheimo R. and Nippolainen E. Biomed. Opt. Ex-press, 2011, vol. 2, рр. 996–1006.
  11. Kamshilin A.A., Mamontov O.V., Koval V.T., Zayats G.A. and Romashko R.V. Biomed. Opt. Express, 2015, vol. 6, рр. 4326–4334. DOI: 10.1364/BOE.6.004326.
  12. Kamshilin A.A., Nippolainen E., Sidorov I.S., Vasilev P.V., Erofeev N.P., Podolian N.P. and Romashko R.V. Scientific reports, 2015, vol. 5, p. 10494. DOI:10.1038/srep10494.
  13. Sidorov I.S., Volynsky M.A. and Kamshilin A.A. Biomed. Opt. Express, 2016, vol. 7, рр. 2469–2474. DOI:10.1364/BOE.7.002469.
  14. Teplov V., Nippolainen E., Makarenko A.A., Giniatullin R. and Kamshilin A.A. Biomed. Opt. Express, 2014, vol. 5, рр. 3123–3139. DOI: 10.1364/BOE.5.003123.
  15. Kyriacou P.A., Shafqat K., Pal S.K. Measurement, 2012, vol. 42, рр. 1001–1005. DOI:10.1016/j.measurement.2009.02.005.