ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)

vol 63 / September, 2020

DOI 10.17586/0021-3454-2019-62-4-346-354

UDC 681.5.015.8


T. Orłowska-Kowalska
Wroclaw University of Science and Technology, Department of Electrical Machines, Drives and Measurements;

S. Y. Lovlin
ITMO University, Saint Petersburg, 197101, Russian Federation; Associate Professor

M. . Tsvetkova
ITMO University; student

A. A. Abdullin
ITMO University, Saint Petersburg, 197101, Russian Federation; Associate Professor

A. G. Mamatov
ITMO University, Department of Electrotechnics and Precision Electromechanical Systems; Post-Graduate Student

V. A. Guryanow
ITMO University;

Read the full article 

Abstract. A method of identification of electromechanical parameters of the electric drive, based on the method of least squares, is proposed. The method solves the problem of automatic acquisition of experimental data under the conditions of speed and rotation angle limitation. Algorithm realizing the method can be automatically adjusted during its operation to achieve high accuracy of the estimated parameters. An algorithm for servo tracking telescope is presented as an example. The proposed algorithm may be of interest for designers of electromechanical systems with limited motion. Experimental verification of the results on a two-mass bench with variable stiffness coefficient and variable moment of inertia of the second mass was carried out.
Keywords: movement restriction of electric drive, automation of identification, disturbance, precision electric motor, relay control


1. Ljung L. System Identification: Theory for the User, MIT Press, Cambridge, MA, 1980. 2. Sadovnikov M.A., Tomasov V.S., Tolmachev V.A. Journal of Instrument Engineering, 2011, no. 6(54), pp. 81–86. (in Russ.) 3. Kapun A., Curkovic M., Hace A., Jezernik K. Simulation Modelling Practice and Theory, 2008, no. 16, pp. 1254–1265. 4. Tutunji T., Molhim M., Turki E. Simulation Modelling Practice and Theory, 2007, vol. 15, рр. 970–988. 5. Ravindra Pantankar, Liangtao Zhu. Proceedings of the 2004 American Control Conference, 2004, vol. 4, рр. 3851–3856. 6. Lovlin S.Y., Abdullin A.A. IX International Conference on Power Drives Systems (ICPDS), Perm, 2016, рp. 1–5. DOI: 10.1109/ICPDS.2016.7756719. 7. Lovlin S.Y., Tsvetkova M.H., Subbotin D.A. Advances in Automatic Control: Proceedings of the 16th International Conference on Automatic Control, Modelling & Simulation (ACMOS '14), 2014, no. 35, pp. 199–206. 8. Liu L., Cartes D.A., Liu W. Proceedings of the 2007 American Control Conference, 2007, рр. 2955–2960. 9. Vasil’yev V.N., Tomasov V.S., Shargorodskiy V.D., Sadovnikov V.A. Journal of Instrument Engineering, 2008, no. 6, pp. 5–11. 10. Subbotin D.A., Lovlin S.Y., Tsvetkova M.H. Manufacturing Engineering, Automatic Control and Robotics: Proceedings of the 14th International Conference on Robotics, Control and Manufacturing Technology (ROCOM '14), 2014, no. 32, pp. 50–57. 11. Xing Y. IEEE Trans. Power Electronic, 2002, vol. 17, рр. 353–364. 12. Gutierrez-Villalobos J.M., Rodriguez-Resendiz J., Rivas-Araiza E.A., Mucino V.H. Neurocomputing, 2013, vol. 118, рр. 87–100. 13. Cirrincione M. et al. IEEE Trans. Ind. Appl., 2003, vol. 39, рp. 1247–1256. 14. Alonge F., D'Ippolito F., Raimondi F.M. Control Engineering Practice, 2001. vol. 9, рр. 647–657. 15. Balkovoy A.P., Tsatsenkin V.K. Pretsizionnyy elektroprivod s ventil’nymi dvigatelyami (Precision Electric Drive with Brushless DC Motors), Moscow, 2010. (in Russ.) 16. Cabrera L.A. et al. IEEE Trans. Power Electron, 1997, vol. 12, рp. 779–787. 17. Zhu Z.Q. and Howe D. IEEE Trans. on Energy Conversion, 2000, vol.15, рp. 407–412. 18. Koubaa Y. International Conference on Electrical Drives and Power Electronics, 2001, рp. 433–437.