DOI 10.17586/0021-3454-2019-62-5-433-441
UDC 535.6; 004.421
METHOD OF ESTIMATING THE VISUAL COMPLEXITY OF DYNAMIC IMAGES
ITMO University, Saint Petersburg, 197101, Russian Federation; Professor
N. V. Matveev
ITMO University, Saint Petersburg, 197101, Russian Federation; Assosiate professor
N. P. Sapunova
ITMO University, Saint Petersburg, 1097101, Russian Federation; postgraduate
R. M. Akhmadullin
ITMO University, Department of Laser Technologies and Systems;
F. S. Usmanova
ITMO University, Faculty of Laser Photonics and Optoelectronics;
Read the full article
Abstract. Results of the study of images with fractal nature as a type of visual stimulations in light therapy are presented. A comparative analysis of dynamic images of the urban landscape obtained using an optoelectronic system, objects of natural environment, and laser abstract dynamic images is performed with subsequent allocation of contours using a modified boundary detector. Calculation of the ratio of the fractal dimension D performed for images of different categories, shows that for laser-abstract dynamic images D = 1,33 ± 0,02; this allows one to use them in the form of a visual series as the basis of visual therap.
References:
1. Forsythe A., Nadal M., Sheehy N., Cela-Conde C.J., & Sawey M. British Journal of Psychology, 2011, nо. 102(1), рp. 49–70. 2. Taylor R.P. Leonardo, 2006, nо. 39, рp. 245–251. 3. Spehar B., Clifford C.W.G., Newell B.R., Taylor R.P. J. Comput. Graph., 2003, nо. 27, рp. 813–820. DOI: 10.1016/s0097-8493(03)00154-7. 4. Taylor R.P. Arts Psychother, 2006, nо. 2(33), рp. 143–147, 5. Berlyne D.E. Perception and Psychophysics, 1970, nо. 8, рp. 279–286. 6. Prokopenko V.T., Matveev N.V., Sapunova N.P., Egorova E.K., Elkina L.S. Journal of Instrument Engineering, 2018, nо. 6(61), рp. 513–520. (in Russ.) 7. Taylor R.P., Spehar B., Van Donkelaar P., Hagerhall C.M. Frontiers in Human Neuroscience, 2011, vol. 5, art. 60. DOI: 10.3389/fnhum.2011.00060. 8. Mandelbrot B. The Fractal Geometry of Nature, San Francisco, W.H. Freeman, 1982, 468 p. 9. Lazebnik S., Schmid C., Ponce J. IEEE Conf. on Computer Vision and Pattern Recognition, 2006, рр. 2169–2178. 10. Dalal N., Triggs B. Proc. CVPR, 2005, nо. 2, рр. 886–893. 11. Tkacheva L.O. Vestnik of St. Petersburg State University, Series 12, 2010, no. 2, pp. 378–387. (in Russ.) 12. Kabrin V.I., Viskochkov V.S., Prudovikov I.O., Tkachenko A.Y., Yakovlev N.I. Siberian Journal of Psychology, 2016, nо. 61, рp. 147–155. (in Russ.) 13. Wilson E.O. Biophilia: The Human Bond with Other Species, Cambridge, MA, Harvard University Press, 1984. 14. Hagerhall C.M., Laike T., Taylor R.P., K¨uller M., K¨uller R., Martin T.P. Perception, 2008, nо. 37(10), рр. 1488–1494. DOI: 10.1068/p5918. 15. Joye Y. Intern. Journal of Art and Design Education, 2005, nо. 24(2), рр. 175–185. DOI: 10.1111/j.1476 8070.2005.00438.x. 16. Peitgen H.-O., Jurgens H., Saupe D. and Zahlten C. The Language of Fractals, Scientific Amer., 1990, nо. 10, рр. 36–44. 17. Birkhoff G.D. Aesthetic Measure, Cambridge, MA: Harvard University Press, 1933. 18. Eysenck H.J. Psychological Rev., 1941, nо. 48, рр. 83–92. DOI:10.1037/h0062483. 19. Eysenck H.J. J. of General Psychology, 1968, nо. 79, рр. 3–17. 20. Eysenck H.J., Castle M. British Journal of Psychology, 1970, nо. 61, рр. 65–81. 21. Wagon S. Mathematica® in Action, Springer, 2010. 22. Moisy F. Computing a fractal dimension with Matlab: 1D, 2D and 3D Box-counting, https://uk.mathworks.com/matlabcentral/fileexchange/13063-boxcount.