ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

9
Issue
vol 63 / September, 2020
Article

DOI 10.17586/0021-3454-2019-62-6-511-516

UDC 004.94

ANALYSIS OF DYNAMIC CHARACTERISTICS OF COMPLEX GRAPH STRUCTURES

Y. A. Ipatov
Mari State Technical University, Department of Informatics; assistant


A. V. Krevetsky
Mari State Technical University, Department of Informatics;


I. V. Kalagin
Volga State University of Technology, Department of Informatics and System Programming ;


B. V. Sokolov
St. Petersburg Institute for Informatics and Automation of Russian Academy of Sciences; Deputy Director for R&D; Professor


Read the full article 

Abstract. Quantitative characteristics of graph models are studied. An algorithm is synthesized to analyze the dynamic characteristics of social networks target groups. The developed software toolkit may be useful in analysis of the problems of social network management by automating the tracking of causal indicators of changes in the social graph. The proposed prototype software may be of interest for marketers, system analysts, as well as for specialists involved in analysis of social networks.
Keywords: dynamic network analysis, network analysis methods, social graph models, graph visualization, conversion tool

References:
  1. Pitas I. Graph-Based Social Media Analysis, Chapman & Hall/CRC Press, 2015, 442 p.
  2. Sazanov V.M. Sotsial'nyye seti i tekhnologii (Social Networks and Technologies), Moscow, 2010, 222 р. (in Russ.)
  3. http://www.empatika.com/blog/santa-fe-newman-emerging-network-science.
  4. https://roem.ru/07-08-2014/109742/pro-mozgovye-virusy/. (in Russ.)
  5. http://worldcrisis.ru/crisis/2232603.
  6. Batura T.V. Programmnye produkty i sistemy (Software & Systems), 2013, no. 3, pp. 130–137. (in Russ.)
  7. Churakov A.N. Sociological Research, 2001, no. 1, pp. 109–121. (in Russ.)
  8. Markovsky B., Ridgeway C., Lawler E. Sociological Theory, 1993, vol. 11, рр. 268–290.
  9. Foreman J.W. Data Smart: Using Data Science to Transform Information into Insight, John Wiley & Sons, Inc., Indianapolis, Indiana, 2014.
  10. Blau P. Microprocess and macrostructure, Social exchange theory, Cook K., ed., Beverly Hills, Sage, 1988, рр. 128–160.
  11. Watts D.J. Small Worlds: The dynamics of networks between order and randomness, Princeton Uni-versity Press, 2004, 262 p.
  12. Kas'yanov V.N., Evstigneyev V.A. Grafy v programmirovanii: obrabotka, vizualizatsiya i primeneniye (Graphs in Programming: Processing, Visualization and Application), St. Petersburg, 2003, 1104 р. (in Russ.)
  13. Urakov A.R., Timiryazev T.V. Prikladnaya Diskretnaya Matematika, 2013, no. 3(21), pp. 86–92. (in Russ.)
  14. http://www.teoria-practica.ru/rus/files/arhiv_zhurnala/2012/4/sоciоlоgiyа/bondarenko.pdf. (in Russ.)
  15. Buchanan M. Nexus: Small Worlds and the Groundbreaking Science of Networks, W.W.Norton&Company, 2002, 235 p.
  16. Newman M. Networks: An Introduction, Oxford University Press, 2010, 784 р.
  17. Krivitsky P.N., Handcock M.S. Journal of the Royal Statistical Society, Series B, 2014, no. 1(76), pp. 29–46. DOI: 10.1111/rssb.12014.