ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

10
Issue
vol 62 / November, 2019
Article

DOI 10.17586/0021-3454-2019-62-7-641-647

UDC 616.31-085; 68.23:681.787.7

IN VIVO STUDY OF MINERALIZED SCURF UNDER THE GUMS USING AN INTERFEROMETRIC DEVICE

V. T. Prokopenko
ITMO University, Saint Petersburg, 197101, Russian Federation; Professor


E. E. Majorov
University of the EurAsEC Inter-Parliamentary Assembly; Associate professor


L. I. Shalamay
Pavlov First St. Petersburg State Medical University, Department of Therapeutic Dentistry and Periodontology ;


M. V. Khokhlova
A. F. Mozhaisky Military Space Academy, Department of Physics; Associate Professor


D. D. Kapralov
;


B. D. Katunin
Naval Polytechnical Institute, Department of Physics;


Abstract. The possibilities of using an automated coherent-limited interferometric system for tomographic measurements in dentistry are considered. Results of experimental studies in vivo of mineralized deposits under the gum in the area of the maxillary and mandibular arches of the first and second molars are presented. Dependence of the reflection coefficient distribution on the depth of the gums in the absence of mineralized sediment and in its presence is analyzed. The results of measurements of the geometric parameters of mineralized deposits are shown to have an error less than 1 µm. A scheme of the automated coherent-limited interferometric system and its technical characteristics are presented.
Keywords: interferometric system, tomography, mineralized sediments, molar, reflection coefficient, measurement error, measurement range

References:
  1. Majorov Е.Е., Kotov I.R., Khopov V.V. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2004, no. 15, pp. 70–72. (in Russ.)
  2. Majorov E.E., Prokopenko V.T. Biomedical Engineering, 2012, no. 3(47), pp. 109–111.
  3. Born M., Wolf E. Principles of Optics, Pergamon Press, 1970.
  4. Landsberg G.S. Optika (Optics), Moscow, 1976, 926 р. (in Russ.)
  5. Malacara D. Optical Shop Testing, John Wiley & Sons, 2007, 888 р.
  6. Kreopalova G.V., Lazareva N.L., Puryayev D.T. Opticheskiye izmereniya (Optical Measurements), Moscow, 1987, 264 р. (in Russ.)
  7. Afanas'yev V.A. Opticheskiye izmereniya (Optical Measurements), Moscow, 1968, 263 р. (in Russ.)
  8. Gelikonov V.M., Gelikonov G.V., Kuranov R.V., Pravdenko K.I., Sergeev A.M., Feldshtein F.I., Khanin Ya.I., Shabanov D.V., Gladkova N.D., Nikulin N.K., Petrova G.A., Pochinko V.V. Journal of Experimental and Theoretical Physics Letters, 1995, no. 2(61), pp. 158–162.
  9. Hausler G., Lindner M.W. F. Biomed. Opt., 1998, no. 1(3), pp. 21–31.
  10. Bol'shakov O.P., Kotov I.R., Khopov V.V. Biomedical Engineering, 1997, no. 5, pp. 285–288.
  11. Hasier G. et al. Appl. Optics, 1988, no. 22(27), pp. 4638–4644.
  12. Hasier G., Herrmann F. Appl. Optics, 1988, no. 22(27), pp. 4631–4637.
  13. Gu F., Hung Y., Chen F. Appl. Optics, 1994, no. 3(33), pp. 5308–5317.
  14. Majorov E.E., Prokopenko V.T. Biomedical Engineering, 2012, no. 3(46), pp. 109–111.
  15. Zakhar’yevskiy A.N. Interferometry (Interferometers), Moscow, 1952, 296 р. (in Russ.)
  16. Maiorov E.E., Udakhina S.V., Chernyak T.A., Prokopenko V.T., Tsygankova G.A. Biomedical Engineer-ing, 2016, no. 2, pp. 84–87.
  17. Maiorov E.E., Prokopenko V.T., Mashek A.C., Tsygankova G.A., Kurlov A.V., Khokhlova M.V., Kirik D.I., Kapralov D.D. Measurement Techniques, 2017, no. 10(60), pp. 1016–1021.