ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)

vol 63 / May, 2020

DOI 10.17586/0021-3454-2019-62-8-710-716

UDC 517.928


S. E. Ivanov
ITMO University; Associate professor

A. V. Boukhanovsky
ITMO University, Saint Petersburg, 197101, Russian Federation; Director

Read the full article 

Abstract. A hybrid transformation method is proposed for the problems of analyzing nonlinear dynamical sys-tems of polynomial structure. The method is based on polynomial transformations and allows for analyzing analytically the properties of stationary solutions for systems in normal and extreme operating conditions; for non-stationary (e.g., transition) solutions, it may be used in conjunction with the Runge-Kutta numerical method. The method has significantly less computational complexity than numerical methods of an equivalent degree of accuracy and does not require determination of conditions and domain of convergence of the approximate solution. It makes it possible to calculate characteristics of various technical objects under external periodic influences. As an example, the method of transformations is used to study a dynamic model of truck crane and to carry out the calculations for vibration-proof systems of boat motors.
Keywords: nonlinear differential equation, analytical method, polynomial transformation, stationary mode

  1. Aldoshin G.T. Teoriya lineynykh i nelineynykh kolebaniy (Theory of Linear and Nonlinear Oscillations), St. Petersburg, 2013, 320 р. (in Russ.)
  2. Afanas'ev A.P., Dzyuba S.M., Kirichenko M.A., Rubanov N.A. Zh. Vychisl. Mat. Mat. Fiz., 2013, no. 2(53), pp. 321–328. DOI: (in Russ.)
  3. Afanas'ev A.P., Dzyuba S.M. Computational Mathematics and Mathematical Physics, 2015, no. 10(55), pp. 1665–1673. DOI:
  4. Bruno A.D. Computational Mathematics and Mathematical Physics, 2018, no. 3(58), pp. 328–347.
  5. Arushanyan O.B. and Zaletkin S.F. Vychislitel’nye Metody i Programmirovanie (Numerical Methods and Programming), 2016, no. 2(17), pp. 121–131. DOI 10.26089/NumMet.v17r212. (in Russ.)
  6. Orlov V., Khmara P. Bulletin of Science and Practice, 2016, no. 10, pp. 22.
  7. Orlov V.N., Kovalchuk O.A., Linnik E.P., Linnik I.I. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki (Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.), 2018, no. 4, pp. 24–35 (in Russ.). DOI: 10.18698/1812-3368-2018-4-24-35
  8. Mel'nikov G.I. Dinamika nelineynykh mekhanicheskikh i elektromekhanicheskikh sistem (Dynamics of Nonlinear Mechanical and Electromechanical Systems), Leningrad, 1975, 198 р. (in Russ.)
  9. Ivanov S.E. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2012, no. 4(80), pp. 90–92. (in Russ.)
  10. Pan V.Ya. Uspekhi matematicheskikh nauk, 1966, no. 1(21), pp. 103–134. (in Russ.) 1
  11. Strassen V. Numerische Mathematik, 1973, no. 3(20), pp. 238–251.
  12. Ivanov S.E. Contemporary Engineering Sciences, 2016, no. 10(9), pp. 487–495.
  13. Ivanov S.E., Melnikov V.G. Applied Mathematical Sciences, 2015, no. 119(9), pp. 5951–5960.