ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

7
Issue
vol 63 / July, 2020
Article

DOI 10.17586/0021-3454-2019-62-8-729-733

UDC 535.55, 535.542

POLARIZATION-INTERFERENCE METHOD FOR STUDYING PHOTOREFRACTIVE EFFECT IN UNIAXIAL CRYSTALS

V. A. Maksimenko
Far Eastern State Transport University, Department of Post-Graduate Study, Doctoral Studies and Scientific Training;


Read the full article 

Abstract. Optically induced defects in photorefractive crystals are studied. The possibility of application of polarization-interference method is considered. The experimental conditions for studying photoinduced defects in lithium niobate crystals by analyzing the polarization interference are formulated. A technique is proposed that allows for determination of the photoinduced birefringence value of a crystal in the region of the induced defect by the level of light intensity transmitted through the system. Schematic diagram of an experimental setup for studying the kinetics of the photoinduced defects formation in uniaxial crystals is presented.
Keywords: interference of polarized light waves, uniaxial crystals, photorefractive effect, birefringence, optically induced defects, lithium niobate crystal

References:
  1. Syuy A.V., Stroganov V.I., Krishtop V.V., Lihtin V.V. Proc. of SPIE, 2007, vol. 6595.
  2. Guibaly F., Young L. Ferroelectrics, 1983, vol. 46, рр. 201–208.
  3. Maksimenko V.A., Syuy A.V., Karpets Yu.M. Fotoindutsirovannyye protsessy v kristallakh niobata litiya (Photoinduced Processes in Lithium Niobate Crystals), Moscow, 2008, 96 р. (in Russ.)
  4. Sidorov N.V., Palatnikov M., Yanichev A.A., Gabain A.A., Pikoul O.Yu., and Smirnov A.N. Optics and Spectroscopy, 2013, no. 4(115), pp. 523–528. DOI: 10.1134/S0030400X13100159
  5. Maksimenko V.A., Krishtop V.V. Proc. of SPIE, 2016, vol. 10176, DOI: 10.1117/12.2268254.
  6. Sidorov N.V., Volk T.R., Mavrin B.N., Kalinnikov V.T. Niobat litiya: defekty, fotorefraktsiya, kolebatel'nyy spektr, polyaritony (Lithium Niobate: Defects, Photorefraction, Vibrational Spectrum, Polaritons), Moscow, 2003, 255 р. (in Russ.)
  7. Berezhnoy A.A. Journal of Optical Technology, 1995, no. 1, pp. 6–23. (in Russ.)
  8. Sidorov N.V., Kruk A.A., Yanichev A.A., Palatnikov M.N., Kalinnikov V.T. Doklady Physical Chemistry, 2014, no. 1(459), pp. 173–176.
  9. Akhmanov S.A., Nikitin S.Yu. Fizicheskaya optika (Physical Optics), Moscow, 2004, 659 р. (in Russ.)
  10. Pikul' O.Yu., Kulikova G.V., Stroganov V.I. Journal of Instrument Engineering, 2013, no. 1(56), pp. 55–57. (in Russ.)
  11. Gunter P., Huignard J.-P. Photorefractive materials and their applications 2. Materials, Springer Science + Busyness Media LLC, 2007.
  12. Kuz'minov Yu.S. Elektroopticheskiy i nelineynoopticheskiy kristall niobata litiya (Electro-Optical and Non-Linear Optical Lithium Niobate Crystal), Moscow, 1987, 264 р. (in Russ.)
  13. Petrov M.P. Stepanov S.I., Khomenko A.V. Fotorefraktivnyye kristally v kogerentnoy optike (Photorefractive Crystals in Coherent Optics), St. Petersburg, 1992, 320 р. (in Russ.)
  14. Yariv A., Yeh P. Optical Waves in Crystals, John Wiley & Sons, 1984.
  15. Konstantinova A.F., Grechushnikov B.A., Bokut' B.V., Valyashko Ye.G. Opticheskiye svoystva kristallov (Optical Properties of Crystals), Moscow, 1995, 302 р. (in Russ.)
  16. Lopatina P.S., Krishtop V.V. Journal of Optical Technology, 2010, no. 6(77), pp. 399–400. (in Russ.)