ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

7
Issue
vol 63 / July, 2020
Article

DOI 10.17586/0021-3454-2019-62-9-825-833

UDC 62-506

ROBUST AUTONOMOUS CONTROL OF A MULTIPLY CONNECTED LINEAR OBJECT WITH ENTRY DELAYS

I. V. Gogol
; St. Petersburg State Technological Institute, Department of Processes Automation in Chemical Industry; Post-Graduate Student


O. A. Remizova
St. Petersburg State Institute of Technology (Technical University), Department of Automation of Processes in Chemical Industry;


V. V. Syrokvashin
St. Petersburg State Institute of Technology (Technical University), Department of Automation of Processes in Chemical Industry; Cand. Techn. Sci.


A. L. Fokin
St. Petersburg State Institute of Technology (Technical University), Department of Automation of Processes in Chemical Industry; Professor


Read the full article 

Abstract. A new technique is proposed for compensation for cross-links of a multiply connected control object with delays in direct and cross links. Application of the technique allows one to obtain a physically realizable compensator structure for any correlation between the values of delays in direct and reciprocal relationships and for any transfer functions of inertial elements, and also ensures the robustness of the system to the parametric uncertainty of the object and the values of delay.
Keywords: robust system, traditional regulator, control delay, roughness, performance, compensation method, stability gain margin, robust stability, restricted area, parametric disturbance, nominal system

References:
  1. Pupkov K.A., Egupov N.D., ed., Metody klassicheskoy i sovremennoy teorii avtomaticheskogo upravle-niya. T. 3. Sintez regulyatorov sistem avtomaticheskogo upravleniya (Methods of the Classical and Modern Theory of Automatic Control. Vol. 3. Synthesis of Regulators of Automatic Control Systems), Moscow, 2004, 616 р. (in Russ.)
  2. Gayduk A.R. Teoriya i metody analiticheskogo sinteza sistem avtomaticheskogo upravleniya (poli-nomial'nyy podkhod) (Theory and Methods of Analytical Synthesis of Automatic Control Systems (Po-lynomial Approach)), Moscow, 2012, 360 р. (in Russ.)
  3. Tsykunov A.M. Robastnoe upravlenie s kompensatsiey vozmushcheniy (Robust Control with Distur-bance Compensation), Moscow, 2012, 300 p. (in Russ.)
  4. Dudnikov E.G. Avtomaticheskoye upravleniye v khimicheskoy promyshlennosti (Automatic Control in the Chemical Industry), Moscow, 1987, 368 р. (in Russ.)
  5. Remizova O.A., Fokin A.L. Journal of Instrument Engineering, 2016, no. 12(59), pp. 1010–1017. (in Russ.)
  6. Gogol' I.V., Remizova O.A., Syrokvashin V.V., Fokin A.L. Journal of Instrument Engineering, 2017, no. 9(60), pp. 882–890.
  7. Egupov N.D., ed., Metody robastnogo, neyro-nechetkogo i adaptivnogo upravleniya (Robust, Neuro-Fuzzy and Adaptive Control Methods), Moscow, 2002, 744 р. (in Russ.)
  8. Remizova O.A., Syrokvashin V.V., Fokin A.L. Journal of Instrument Engineering, 2015, no. 12(58), pp. 966-972. (in Russ.)
  9. Gogol' I.V., Remizova O.A., Syrokvashin V.V., Fokin A.L. Bulletin of the Saint Petersburg State Institute of Technology (Technical University), 2018, no. 44, pp. 98–105. (in Russ.)
  10. Grigor'yev V.V. Journal of Instrument Engineering, 2000, no. 1–2(43), pp. 18–23.
  11. Grigor'yev V.V., Boykov V.I., Bystrov S.V., Ryabov A.I., Mansurova O.K. Journal of Instrument Engi-neering, 2013, no. 4(56), pp. 15–20. (in Russ.)
  12. Sporyagin K.V. Matematicheskoye modelirovaniye, razrabotka metodov i programmnogo kompleksa dlya nastroyki parametrov tipovykh zakonov regulirovaniya dinamicheskikh sistem s zapazdyvaniyem (Mathematical Modeling, Development of Methods and Software for Setting Parameters of Typical Laws of Regulation of Dynamic Systems with Delay), Candidate’s thesis, St. Petersburg, 2010, 237 р. (in Russ.)