ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2019-62-10-929-940

UDC 621.382.233

MODELING OF RESONANT-TUNNELING DIODES I-V CHARACTERISTICS KINETICS UNDER DESTABILIZING FACTORS INFLUENCE

K. V. Cherkasov
Bauman Moscow State Technical University, Department of Radio-Electronic Systems and Devices;


S. A. Meshkov
Bauman Moscow State Technical University, Department of Instrument-Making Technologies;


M. O. Makeev
Bauman Moscow State Technical University, Department of Instrument-Making Technologies;


Y. . Ivanov
M. V. Lomonosov Moscow State University; student


N. A. Vetrova
Bauman Moscow State Technical University, Department of Instrument-Making Technologies;


N. V. Fedorkova
Bauman Moscow State Technical University, Department of Instrument-Making Technologies;


Read the full article 

Abstract. Resonant tunnel diodes (RTD) are promising elements for use in microwave and HF transceivers, in particular, in nonlinear frequency converters of radio signals. The use of RTD as nonlinear elements allows to improve the performance of the converters, as well as to expand the operating frequency range up to terahertz. The kinetics of RTD volt-ampere characteristic at specified operating conditions under the influence of high temperature and ionizing radiation is studied. Mathematical models describing degra-dation of the RTD volt-ampere characteristic under the effects are developed. The obtained models are used as a basis of a software package that allows to simulate the kinetics of RTD volt-ampere character-istic caused by the action of above factors. The simulation results are compared with experimental data.
Keywords: resonant tunnel diode, kinetic of volt-ampere characteristic, ionizing radiation, high temperature, computer modeling, GaAs/AlGaAs resonant-tunneling heterostructures

References:
  1. Ivanov Yu.A., Meshkov S.A., Fedorenko I.A. et al. Tekhnika i pribory SVCH, 2011, no. 2, pp. 1–9. (in Russ.)
  2. Vetrova N.A., Meshkov S.A., Ivanov Yu.A., Nazarov V.V., Sinyakin V. Yu., Fedorenko I.A., Fedorkova N.V., Shashurin V.D. Herald of the Bauman Moscow State Technical University. Series Instrument Engineering, 2012, nо. 4.
  3. Ivanov Yu.A., Meshkov S.A., Shashurin V.D., Fedorkova N.V., Fedorenko I.A. Journal of Communications Technology and Electronics, 2010, no. 8(55), pp. 982–988. (in Russ.)
  4. Fedorenko I.A., Fedorkova N.V., Shashurin V.D., Ivanov Yu.A. SVCH-tekhnika i telekommunikatsionnyye tekhnologii (KryMiKo’2011) (Microwave Technology and Telecommunication Technologies (CrimeaMiCo’2011)), International Crimean Conference, Abstracts of reports, Sevastopol', 2011, рр. 181–182. (in Russ.)
  5. Ivanov A.I., Dukach I.A., Ivanov Yu.A., Meshkov S.A., Makeyev M.O., Fedorkova N.V. Materialy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii (Proceedings of the International Scientific and Technical Conference), Moscow, 2013, no. 3(13), pp. 69–71. (in Russ.)
  6. http://engjournal.ru/catalog/nano/hidden/811.html (in Russ.)
  7. Makeyev M.O., Ivanov Yu.A., Meshkov S.A. Nanoinzheneriya, 2011, no. 4, pp. 44-48. (in Russ.)
  8. Esaki L., Tsu R. IBM J. of R&D, 1970, no. 1(14), pp. 61–65.
  9. Pérez-Álvarez R., Garcia-Molliner F. Transfer Matrix, Green Function and Related Techniques: Tools for the Study of Multilayer Heterostructures, Castelló de la Plana, Publicacions de la Universitat Jaume I, 2004, 285 p.
  10. Makeyev M.O. Razrabotka konstruktorsko-tekhnologicheskikh metodov i sredstv povysheniya nadezhnosti smesiteley radiosignalov na osnove rezonansno-tunnel'nykh diodov (Development of Design and Technological Methods and Means for Improving the Reliability of Radio Signal Mixers Based on Resonant Tunneling Diodes), Candidate’s thesis, Moscow, 2014, 241 р. (in Russ.)
  11. Vashchenko V.A., Sinkevich V.S. Physical limitations of semiconductor devices, Springer, 2008, 330 p.
  12. Irvin J.C. The reliability of GaAs FETs in: GaAs FET Principle and Technology, MA, Artech House, 1982, chapter 6.
  13. Nagatsuma T., Fujita M., Kaku A., Tsuji D., Nakai S., Tsuruda K., Mukai T. Procs. of Intern. Conf. on Telecomm. and Remote Sensing, Luxembourg, 2014, vol. 1, рр. 41.
  14. Srivastava A. Eur. J. of Adv. in Eng. and Techn., 2015, vol. 2, рр. 54.
  15. Baranov I.A., Dudinov K.V., Epifantsev A.A., Zamyatina G.A., Korotkov A.N., Korotkova I.Yu., Obrezan O.I., Parkhomenko V.A. Elektronnaya Tekhnika, Series 1 "SVCH – Tekhnika", 2010, no. 1(504), pp. 44–53. (in Russ.)
  16. Linsted R.D., Surty R.J. IEEE Trans. on Electron Devices, 1972, no. 1(ED-19), pp. 41–44.
  17. Chou Y.C., Leung D., Lai R., Grundbacher R., Barsky M., Kan Q., Tsai R., Wojtowicz M., Eng D., Tran L., Block T., Liu P.H., Nishimoto M., Oki A. IEEE Electron Device Lett., 2003, no. 6(24), pp. 378–380.
  18. Erofeev E.V., Kazimirov A.I., Kagadey V.A. Proceedings of Tomsk State University of Control Systems and Radioelectronics, 2011, no. 2(24), pt. 2, pp. 41–46. (in Russ.)
  19. Arykov V.A., Anichenko E.V., Erofeev E.V., Kagadei V.A. Proc. of the 5th Eur. Microwave Integrated Circuits Conf. Paris, 2010, рр. 166–169.
  20. Cha H.Y., Paek S.W., Lee J.H., Chung K.W., Seo K.S. Proc. of CS MANTECH, Vancouver, 1999, рр. 67–70.
  21. Karbownik P., Barańska A., Szerling A., Macherzyński W., Papis E., Kosiel K., Bugajski M., Tłaczała M., Jakieła R. Optica Applicata, 2009 , no. 4(XXXIX), pp. 655–661.
  22. Shin Y.-C., Murakami M., Wilkie E.L., Callegari A.C. J. Appl. Phys., 1987, no. 2(62), pp. 582–590.
  23. Stock J., Malindretos J., Indlekofer K.M., Pöttgens M., Förster A., Lüth H. IEEE Trans. on Electron Devices, 2001, no. 6(48), pp. 1028–1032.
  24. Murakai M. Sci. and Techn. of Adv. Mat., 2002, no. 1(3), pp. 1–27.
  25. Vidimari F. Electronics Letters, 1979, no. 21(15), pp. 674–676.
  26. Polevich S.A., Bogdanov Yu.M., Gromov D.V., Petrov M.S., Fedorov Yu.V., Egorkin V.I.. Mikrovolnovyye i telekommunikatsionnyye tekhnologii (KryMiKo’2016) (Microwave Technology and Telecommunication Technologies (CrimeaMiCo’2016)), 26th International Conference, Abstracts of reports, Sevastopol', 2016, рр. 1765–1771. (in Russ.)
  27. Tapero K.I. Razvitiye metodov raschotno-eksperimental'nogo modelirovaniya radiatsionnykh effektov pri proyektirovanii i ispytaniyakh radiatsionno-stoykikh izdeliy elektronnoy tekhniki kosmicheskogo primeneniya (Development of Methods for Calculation and Experimental Modeling of Radiation Effects in the Design and Testing of Radiation-Resistant Products of Electronic Equipment for Space Applications), Doctor’s thesis, Lytkarino, 2017. (in Russ.)
  28. Meshchurov O.V., Tapero K.I. Problems of Atomic Science and Technology, Physics of Radiation Effect and Radiation Materials Science, 2011, vol. 3, рр. 41–45. (in Russ.)
  29. Sarkisov S.Yu., Kosobutsky A.V., Brudnyi V.N., Kargin N.Ya. Russian Physics Journal, 2013, no. 8/3(56), pp. 201–203. (in Russ.)
  30. Brudnyi V.N., Sarkisov S.Y., Kosobutsky A.V. Semiconductors, 2010, no. 9(44), pp. 1158–1166.
  31. Veneditov M.M., Obolenskaya Ye.S., Kiselev V.K., Obolenskiy S.V. Zhurnal radioelektroniki, 2017, no. 1. ISSN 1684-1719.
  32. Tarasova E.A. Vestnik of Lobachevsky University of Nizhni Novgorod, 2014, no. 1(2), pp. 100–115. (in Russ.)
  33. Tarasova E.A., Demidova D.S., Obolensky S.V. et al. Semiconductors, 2012, no. 12(46), pp. 1587–1592.
  34. Obolenskiy S.V. Fiziko-topologicheskoye modelirovaniye kharakteristik submikronnykh polevykh tranzistorov na arsenide galliya s uchetom radiatsionnykh effektov (Physic-Topological Modeling of the Characteristics of Submicron Field-Effect Transistors on Gallium Arsenide Taking into Account Radiation Effects), Doctor’s thesis, Nizhni Novgorod, 2002.
  35. Metelkin I.O., Elesin V.V. Electronic engineering. Series 2. Semiconductor devices, 2016, no. 2(241), pp. 10–19. (in Russ.)
  36. Elesin V.V. Russian Microelectronics, 2016, no. 2(43), pp. 133–141. (in Russ.)
  37. Elesin V.V., Gromov D.V., Chukov G.V., Repin V.V., Vavilov V.A. Russian Microelectronics, 2010, no. 2 (39), pp. 136–148.
  38. Nazarova G.N., Elesin V.V., Nikiforov A.Y., Kuznetsov A.G., Usachev N.A., Amburkin D.M. Russian Microelectronics, 2016, no. 1(46), pp. 68–76.
  39. Shukaylo V.P., Obolenskiy S.V., Basargina N.V., Vorozhtsova I.V., Dubrovskikh S.M., Tkachev O.V. Vestnik of Lobachevsky University of Nizhni Novgorod, 2012, no. 5(1), pp. 60–64. (in Russ.)
  40. Bobyl A.V., Konnikov S.G., Ustinov V.M., Baidakova M.V., Maleev N.A., Sakseev D.A., Konakova R.V., Milenin V.V., Prokopenko I.V. Semiconductors, 2012, no. 6(46), pp. 814–824.
  41. Mazouz H., Belghachi A., Hadjaj F. Intern. J. of Phys. and Math. Sci., 2013, no. 12(7), pp. 1718–1720.
  42. Jiang M., Xiao H.Y., Peng S.M., Yang G.X., Liu Z.J., Zu X.T. Scientific reports, 2018, no. 8, article 2012, https://www.nature.com/articles/s41598-018-20155-0
  43. Beddiafi Y., Saadoune A., Dehimi L. J. of New Techn. and Mat., 2014, no. 01(04), pp. 68–72.
  44. El Allam M., Inguimbert C., Nuns T., Meulenberg A., Jorio A. et al. IEEE Trans. on Nuclear Science, 2017, no. 3(64), pp. 991–998.
  45. Wei Q. Studies of Radiation Hardness of MOS Devices for Application in a Linear Collider Vertex Detector. Doc. Diss. Technischen Universität München, 2008.
  46. Vaitkus J.V. et al. Lith. J. Phys., 2016, vol. 56, рр. 102–110.
  47. Kazukauskas V., Vaitkus J.-V. Opto-Electronics Review, 2004, no. 4(12), pp. 399–403.
  48. El-Basit W.A. et al. Nuclear Engineering and Technology, 2016, vol. 48, pp. 1219–1229.
  49. Myers S.M., Wampler W.R., Modine N.A. J. Appl. Phys., 2016, vol. 120, р. 134502.
  50. Rutherford A. Electronic effects in radiation damage simulation in metals. PhD. Diss., London Centre of Nanotechnology University College London, 2009.
  51. Coelho A.V.P., Boudinov H. Nuclear Instruments and Methods in Physics Research, 2006, vol. 245, рр. 435–439.
  52. Novikov L.S. Radiatsionnyye vozdeystviya na materialy kosmicheskikh apparatov (Radiation Effects on Spacecraft Materials), Moscow, 2010, 192 р. ISBN 978-5-91304-190-6. (in Russ.)
  53. Orlova M.N., Yurchuk S.Yu., Didenko S.I., Tapero K.I. Russian Microelectronics, 2014, no. 3(17), pp. 217–223. DOI: 10.17073/1609–3577–2014–3–217–223. (in Russ.)
  54. Koltsov G.I., Didenko S.I., Yurchuk S.Yu., Musalitin N.A. Russian Microelectronics, 2005, no. 3, pp. 71–77. (in Russ.)
  55. Korol'chenko A.S., Legotin S.A., Didenko S.I., Kobeleva S.P., Orlova M.N., Murashev V.N. Russian Microelectronics, 2010, no. 2, pp. 50–54. (in Russ.)
  56. Komov A.N., Lizunkova D.A. Vvedenie v fiziku poluprovodnikovoi elektroniki (Introduction to the Physics of Semiconductor Electronics), Samara, 2015, 156 p. (in Russ.)
  57. Certificate on the state registration of the computer programs 2018661051, Programmnyy kompleks rascheta nachal'nogo uchastka vol't-ampernykh kharakteristik GaAs/AlGaAs rezonansno-tunnel'nykh diodov s vozmozhnost'yu provedeniya mashinnogo statisticheskogo eksperimenta (A Software Package for Calculating the Initial Portion of the Current-Voltage Characteristics of GaAs / AlGaAs Resonant Tunneling Diodes with the Possibility of Conducting a Statistical Experiment), Makeyev M.O., Cherkasov K.V., Ivanov Yu.A., Meshkov S.A., 2018. (in Russ.)