ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)

vol 63 / August, 2020

DOI 10.17586/0021-3454-2019-62-12-1053-1059

UDC 53.082.36


S. Y. Zhigulin
Tver State Technical University, Department of Automation of Technological Processes;

L. V. Ilyasov
Tver State Technical University, Department of Automation of Technological Processes;

Abstract. Results of experimental checking a mathematical model of developed gas viscosity analyzer are presented. A generalized scheme and operation of the considered analyzer are described. The analyzer operation is based on measuring the time required for a fixed volume of the analyzed gas to expire through a capillary. Initial equations and theoretical assumptions used to develop the mathematical model of the effusion analyzer are discussed. An experimental setup for testing the developed mathe-matical model and its operation is created. Data obtained with the mathematical model are compared to results of experimental studies. The errors of the mathematical model are determined, conclusions are made about its adequacy and the possibility of further use for the design and calculation of effusion an-alyzers of gas viscosity with decreasing outcoming pressure.
Keywords: effusion analyzer, gas viscosity, mathematical model

  1. Golubev I.F. Vyazkost' gazov i gazovykh smesey (Spravochnoye rukovodstvo) (Viscosity of Gases and Gas Mixtures (Reference Guide)), Moscow, 1959, 375 р. (in Russ.)
  2. Patent RU 2676559, G 01 N9/00, Laboratornyy effuzionnyy analizator plotnosti gazov (Laboratory Ef-fusion Gas Density Analyzer), Ilyasov L.V., Zhigulin S.Yu., Patent application no. 2018105639, Priority 14.02.2018, Published 09.01.2019, Bulletin 1. (in Russ.)
  3. Patent RU 2677926, G 01 N9/00, Laboratornyy analizator plotnosti gazov (Laboratory Gas Density Analyzer), Ilyasov L.V., Zhigulin S.Yu., Patent application no. 2018105638, Priority 14.02.2018, Pub-lished 22.01.2019, Bulletin 3. (in Russ.)
  4. Zhigulin S.Yu., Ilyasov L.V. Vestnik TSTU, 2018, no. 1(33), pp. 18–22. (in Russ.)
  5. Zhigulin S.Yu. Materialy I Molodezhnoy mezhdunarodnoy nauchno-prakticheskoy konferentsii: issle-dovaniya i razrabotki molodykh uchonykh: nauka i praktika (Materials of the I Youth International Sci-entific and Practical Conference: Research and Development of Young Scientists: Science and Prac-tice), Novosibirsk, 2017, рр. 34–39. (in Russ.) Farzane N.G., Ilyasov L.V., Azim-zade A.Yu. Tekhnologicheskiye izmereniya i pribory (Technological Measurements and Instruments), Moscow, 1989, 456 р. (in Russ.)
  6. Patent RU 2393456, G 01 N9/00, Datchik plotnosti i vyazkosti (Density and Viscosity Sensor), Donzier E., Permuy A. Patent application no. 2007136714, Priority 24.02.2006, Published 27.06.2010, Bulle-tin18. (in Russ.)
  7. Mordasov D.M., Mordasov M.M., Savenkov A.P. Kontrol’. Diagnostika (Testing. Diagnostics), 2016, no. 1, pp. 50–54. (in Russ.)
  8. Badarlis A. Sensors, 2015, no. 9(15), pp. 24318–24342.
  9. Sella J.K., Niedermayera A.O., Jakoby B. Procedia Engineering, 2011, vol. 25, рр. 1297–1300.
  10. Sazhin S.G. Pribory kontrolya sostava i kachestva tekhnologicheskikh sred (Instruments for Monitor-ing the Composition and Quality of Process Media), St. Petersburg, 2012, 431 р. (in Russ.)
  11. Yusibani E., Nagahama Y., Kohno M., Takata Y., Woodfield P.L., Shinzato K., Fujii M. International Journal of Thermophysics, 2011, no. 6(32), pp. 1111–1124.
  12. Fang X., Yue X., Fu J.Y., An W., Zou J., Feng X., Tian W. Review of Scientific Instruments, 2019, no. 7(90).
  13. Berg R. Metrologia, 2005, no. 1(42), pp. 11.
  14. Berg R. Journal of Chemical & Engineering Data, 2013, no. 1(59), pp. 116–124.
  15. Potsch K., Gumpenberger T. SPE EUROPEC/EAGE Annual Conference and Exhibition, 2011,