ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)

vol 63 / July, 2020

DOI 10.17586/0021-3454-2020-63-1-26-34

UDC 681.51:629.73


E. Y. Abdullina
Ufa State Aviation Technical University, Department of Electronics and Biomedical Technologies ;

V. N. Efanov
Ufa State Aviation Technical University, Department of Aircraft Device Building; Head of the Department; Professor

Read the full article 

Abstract. The problem of controlling a highly maneuverable aircraft capable of changing its position in space by modifying the velocity vector in magnitude or direction is considered. A rational algorithm de-veloped for governing an automatic flight control system that does not exceed the main operational limits is presented. For this purpose, in addition to channels for stabilizing the angular position, channels for limiting the specified parameters are included in the aerobatic circuit that controls movement around the center of mass of the aircraft. A method is proposed for ensuring the coordinated interaction of these channels in the switching mode by using a generalized system characteristic that allows describing the entire ensemble of output reactions of the system for all possible moments of change in the structure of the control part. The effectiveness of the proposed approach is confirmed by the results of modeling the synthesized system of automatic control of the angular position of the aircraft.
Keywords: aircraft, maneuverability, flight control system, algebraic selector, mathematical model, autopilot, automatic limitation, synthesis

  1. Vorob'yov V.V., Kiselеv A.M., Polyakov V.V. Sistemy upravleniya letatel'nykh apparatov (Aircraft Control Systems), Moscow, 2008, 203 р. (in Russ.)
  2. Krasilshchikov M.N., Sebryakov G.G., ed., Sovremennyye informatsionnyye tekhnologii v zadachakh navigatsii i navedeniya bespilotnykh manevrennykh letatel'nykh apparatov (Modern Information Technologies in the Problems of Navigation and Guidance of Unmanned Maneuverable Aircraft), Moscow, 2009, 556 р. (in Russ.)
  3. Fedosov E.A., Bobronnikov V.T., Krasilshchikov M.N., Kukhtenko V.I. et al. Dinamicheskoye proyektirovaniye sistem upravleniya avtomaticheskikh manevrennykh letatel'nykh apparatov (Dynamic Design of Control Systems for Automatic Maneuverable Aircraft), Moscow, 1997, 336 р. (in Russ.)
  4. Petunin V.I., Neugodnikova L.M. Russian Aeronautics, 2015, no. 3(58), pp. 279–285.
  5. Petunin V.I. Journal of Instrument Engineering, 2010, no. 10(53), pp. 18–24. (in Russ.)
  6. Petunin V.I., Frid A.I. Journal of Computer and Systems Sciences International, 2012, no. 6, pp. 80–94. (in Russ.)
  7. Gurevich O.S., Gol'berg F.D., Selivanov O.D. Integrirovannoye upravleniye silovoy ustanovkoy mnogorezhimnogo samoleta (Integrated Multi-Mode Aircraft Propulsion Control), Moscow, 1993, 304 р. (in Russ.)
  8. Efanov V.N., Zaytseva A.A. Intellektual'nyye sistemy upravleniya, Moscow, 2010, рр. 135–141. (in Russ.)
  9. Efanov V.N., Zaytseva A.A., Mikryukov S.G. Vestnik UGATU, 2012, no. 6(16), pp. 37–43. (in Russ.)
  10. Petunin V.I., Abdullina E.Yu. Aerospace Instrument-Making, 2012, no. 3, pp. 29–34.
  11. Efanov V.N., Mufazzalov D.F. Russian Aeronautics, 2012, no. 1(55), pp. 14–18.
  12. Sklyarevich A.N. Lineynyye sistemy s vozmozhnymi narusheniyami (Linear Systems with Potential Violations), Moscow, 1975, 352 р. (in Russ.)
  13. Vasiliev V.I., Gusev Yu.M., Efanov V.N. et al. Mnogourovnevoye upravleniye dinamicheskimi ob"yektami (Multilevel Management of Dynamic Objects), Moscow, 1987. 309 р. (in Russ.)
  14. Lipatov A.V., Sokolov N.I. Automation and Remote Control, 1979, no. 9(39), pp. 1285–1291.
  15. Petrov B.N., Sokolov N.I., Lipatov A.V., Nosov L.A. et al. Sistemy avtomaticheskogo upravleniya ob"yektami s peremennymi parametrami: Inzhenernyye metody analiza i sinteza (Automatic Control Systems for Objects with Variable Parameters: Engineering Methods of Analysis and Synthesis), Moscow, 1986, 256 р. (in Russ.)