ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

8
Issue
vol 63 / August, 2020
Article

DOI 10.17586/0021-3454-2020-63-2-120-125

UDC 621. 391

PRACTICAL APPLICATION OF THE ALFORD METHOD FOR ESTIMATING ANISOTROPY FROM CROSS-DIPOLE ACOUSTIC LOGGING RECORDS

R. D. Akhmetsafin
Gazprom Georesurs Ltd., Moscow; Deputy Director


R. Z. Akhmetsafina
National Research University “Higher School of Economicsˮ, Moscow;


Read the full article 

Abstract. The Alford method is a modern tool for estimating anisotropy from cross-dipole acoustic logging records. The azimuthal angle of the acoustic anisotropy direction  is estimated by the minimum cross energy of the converted records. The interval times (speeds) of the fast and slow bending wave pfast, pslow in the forward and reverse directions of anisotropy are estimated using the corresponding transfor-mations. Practical implementation of the method is considered, using the analytical solution of the min-imization problem.
Keywords: cross-dipole acoustic logging, acoustic anisotropy, bending waves, Alford method

References:
  1. Vershinin A.G., Vershinin S.A., Dobrynin S.V. Tekhnologii seismorazvedki (Seismic Technologies), 2013, no. 1, pp. 87–95. (in Russ.)
  2. Shumilov A.V., Belov S.V., Tashkinov I.V. Science and technology bulletin "Karotazhnik", 2014, no. 10, pp. 114–126. (in Russ.)
  3. Oshima A., Syresin D., Blyth M., Schmitt D.P. SPWLA 59th Annual Logging Symposium, Society of Petrophysicists and Well-Log Analysts, London, UK, 2–6 June 2018.
  4. Tao G., Cheng A. C. H., Toksoz M. N. Measurements of Shear-Wave Azimuthal Anisotropy with Cross-Dipole Logs, Massachusetts Institute of Technology, Earth Resources Laboratory, 1997.
  5. Wang P., Bose S., Sinha B. K., Lei T., Blyth M. The Journal of the Acoustical Society of America, 2017, no. 5(141), pp. 3649–3649.
  6. Alford R.M. SEG Technical Program Expanded Abstracts 1986, Society of Exploration Geophysicists, 1986, рр. 476–479.
  7. Patent US 10197691, Acoustic Anisotropy and Imaging by Means of High Resolution Azimuthal Sampling, J.A. Market, G.D. Althoff, 2019.
  8. Nolte B., Cheng A.C.H. Estimation of Nonorthogonal Shear Wave Polarizations and Shear Wave Ve-locities from Four-Component Dipole Logs, Massachusetts Institute of Technology, Earth Resources Laboratory, 1996.
  9. Korotkov I.P., Kuznetsov V.M., Shekhtman G.A., Cherepovskiy A.V. Tekhnologii seismorazvedki (Seismic Technologies), 2014, no. 2, pp. 51–69. (in Russ.)
  10. Briggs V., Rao R. V. N., Burns D. R. Simultaneous Inversion of cross-dipole acoustic waveforms in anisotropic media for azimuthal angle and dispersion of fast and slow shear waves, Massachusetts Institute of Technology, Earth Resources Laboratory, 2003.
  11. Patent US 15333199, Method and System for Processing Dipole Anisotropy, T. Endo, H.P. Valero, D. Syresin, Pub. No. US 2017/0115421 A1, 2017.
  12. Kozak M., Kozak M., Williams J. SPWLA 55th Annual Logging Symposium, Society of Petrophysi-cists and Well-Log Analysts, 18–22 May 2014.
  13. atent US 8102732, Anisotropy Measurement while Drilling, J. Pabon, C.J. Hsu, B.K. Sinha, 2012.
  14. Cataldo O.E.D., Kwiatkowski T.J., Marfurt K.J., Roche S.L., Thomas J.W. Interpretation, 2014, no. 2(2), pp. SE63–SE75.
  15. Patent US 9772420, Estimation of Fast Shear Azimuth, Methods and Apparatus, M.V. Collins, 2017.
  16. Akhmetsafin R.D., Akhmetsafina R.Z. Science and technology bulletin "Karotazhnik", 2016, no. 8, pp. 98–118. (in Russ.)
  17. Akhmetsafin R.D., Akhmetsafina R.Z. Geophysical Research, 2017, no. 4(18), pp. 57–70. (in Russ.)