ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

9
Issue
vol 63 / September, 2020
Article

DOI 10.17586/0021-3454-2020-63-2-191-193

UDC 519.687

INTELLECTUAL TECHNOLOGY FOR ORGANIZING THE EXECUTION OF HETEROGENEOUS WORKFLOWS IN A DISTRIBUTED COMPUTING ENVIRONMENT

M. A. Melnik
ITMO University;


D. A. Nasonov
ITMO University; lecturer


A. V. Boukhanovsky
ITMO University, Saint Petersburg, 197101, Russian Federation; Director


Read the full article 

Abstract. The concept of heterogeneous workflows is formulated and following computational modes are identified: batch, streaming, and iterative. The necessity of developing of scheduling algorithms for each of modes is determined. Developed scheduling algorithms are based on machine learning methods, evolu-tionary approaches, and artificial intelligence methods. A technology has been developed that ensures the collaborative execution of heterogeneous workflows based on a cascade of developed optimization meth-ods.
Keywords: workflow scheduling, cloud computing, supercomputer, stream data processing, collaborative design

References:
  1.  Afanasyev A.P. et al. Parallel computational technologies, 2011, рр. 6–14.
  2.  Kozinov E.A., Gergel' V.P. Russian Supercomputing Days, Moscow, September 24–25, 2018. Vol. 24. P. 25.
  3. Gervich L.R., Kravchenko E.N., Steinberg B.Y., Yurushkin M.V. Numerical Analysis and Applications, 2015, no. 1(18), pp. 35–45. 
  4. Sukhoroslov O., Nazarenko A. Program Systems: Theory and Applications, 2017, no. 1(8), pp. 63–81 (in Russ.)
  5. Rodriguez M.A., Buyya R. Concurr. Compuи  t., 2017, no. 8(29).
  6. Deelman E. et al. Futur. Gener. Comput. Syst., 2015, Vol. 46, рр. 17–35.
  7. Foster I., Kesselman C. The grid 2: Blueprint for a new computing infrastructure, Morgan Kauffman, 2004, 748 p.
  8. Tong Z. et al. Neural Comput. Appl., 2019, https://doi.org/10.1007/s00521-019-04118-8.
  9. Tong Z. et al. Information Sciences, 2020, vol. 512, February, рр. 1170–1191.
  10. Rashmi S., Basu A. Intern. J. Appl. Eng. Res., 2017, no. 12(12), pp. 3311–3317.
  11. Peng B. et al. Middlew. 2015. Proc. 16th Annu. Middlew. Conf., 2015, рр. 149–161.
  12. Dwarakanathan S. Proc. Intern. Comput. Softw. Appl. Conf., 2016, vol. 2, рр. 620–621.
  13. Cheng D. et al. IEEE Trans. Parallel Distrib. Syst., 2018, no. 12(29), pp. 2672–2685.
  14. Hoekstra A.G. et al. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2019, no. 2142(377).
  15. Ben Belgacem M., Chopard B. Futur. Gener. Comput. Syst. 2017, vol. 67, рр. 72–82.