ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

Algorithms for Evaluating Linear and Volumetric (Weight) Wear Rates of Materials Using a Friction Machine

L. V. Efremov
St. Petersburg State Engineering Institute, Department of Abrasive Technologies; Professor


A. V. Tikalov
Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, 195251, Russian Federation; JSC “Compressor”, Saint Petersburg, 194044, Russian Federation; Postgraduate; Head of Section


Read the full article 

Abstract. Universal methods and algorithms for estimating the wear rate of materials with a friction machine at constant and variable specific pressure are considered. Special attention is paid to the study of linear and volumetric wear. Simplified formula for the wear evaluation based on geometric functions decompositions in a Taylor series are proposed. The efficiency of applying a pair of friction with variable pressure by embedding a disk in a flat sample (the chord method) is proved. The dependence of linear and volumetric wear resistance on variable pressure is revealed. Time dependence of the wear resistance is established with the account for correlation coefficients for each of the sample of materials under consideration.
Keywords: wear, wear intensity, material, friction machine, friction pair, sample, evaluation, segment, sector, testing, friction, chord

References:

 

1. Kragel'skiy I.V. Trenie i iznos (Friction and Wear), Moscow, 1968. (in Russ.)

2. ASTM G77-05(2010), Standard Test Method for Ranking Resistance of Materials to Sliding Wear Using Block-on-Ring Wear Test, ASTM International, West Conshohocken, PA, 2010, www.astm.org, DOI: 10.1520/G0077-05R10.

3. Lai S.-Q., Yue L., Li T.-S., Hu Z.-M. Wear, 2006, vol. 260, рр. 462–468.

4. Banghan W., Qiujuan L., Genliang H. AIP Conference Proceedings, 2017, vol. 1794, р. 020030.

5. Khrushchоv M.M., Berkovich E.S. Opredelenie iznosa detaley mashin metodom iskusstvennykh baz (Determination of Wear of Machine Parts by the Method of Artificial Bases), Moscow, 1959, 217 p. (in Russ.)

6. Goldstein M.A. Uncertainty Analysis of a Multifunctional Tribometer, Doctor’s thesis, 2017, https://preserve.lehigh.edu/etd/2604.

7. Servin R., Calderon I., Perez A., Equihua F., Falcon L., Garcia M., Orozco P. METABK, 2018,
no. 4(57), pp. 303–306.

8. Efremov L.V., Tikalov A.V. Breki A.D. Journal of Instrument Engineering, 2016, no. 8(59), pp. 671–676. (in Russ.)

9. Efremov L.V. Problemy upravleniya nadezhnostno-oriyentirovannoy tekhnicheskoy ekspluatatsiyey mashin (Problems of Managing Reliability-Oriented Technical Operation of Machines), St. Petersburg, 2015, 206 р. (in Russ.)

10. Khrushchov M.M. Treniye, iznos i mikrotverdost' materialov: Izbrannyye raboty (Friction, Wear and Microhardness of Materials: Selected Works), Moscow, 2011, 510 р. (in Russ.)

11. Patent RU 2 526 223 C2, G01N 3/56(2014.08), Sposob otsenki iznosostoykosti polimernykh kompozitsionnykh materialov (A method for Assessing the Wear Resistance of Polymer Composite Materials), Gerasimov A.I., Gogoleva O.V., Adamov N.R., Priority 17.12.2012, Published 20.08.2014. (in Russ.)

12. Ginzburg B.M., Tochil'nikov D.G. Technical Physics. The Russian Journal of Applied Physics, 2001, no. 2(46), pp. 249–253.

13. http://tribology.site/index/abrazivnoe_izn/0-37. (in Russ.)

14. Musalimov V.M., Valetov V.A. Dinamika friktsionnogo vzaimodeystviya (Friction Interaction Dynamics), St. Petersburg, 2006, 191 р. (in Russ.)