ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

7
Issue
vol 63 / July, 2020
Article

DOI 10.17586/0021-3454-2020-63-5-483-490

UDC 616-71

Automated Complex for Dynamic Positioning of a Person in a Gravitational Field

M. L. Podvyaznikov
Dr. Sci.; JSC Obukhov Plant; Director General;


A. A. Novichkov
JSC Obukhov Plant; DB Chief Designer;


P. I. Tolkachev
Automated Rehabilitation Systems Ltd.; Doctor-Therapist;


O. A. Viktorov
Peter the Great St. Petersburg Polytechnic University, Institute of Com-puter Science and Technology;


S. V. Bozhokin
SPbPU Peter the Great; Institute of Physics, Nanotechnology and Telecommunications;


N. P. Tolkachev
Automated Rehabilitation Systems Ltd.; Head of Laboratory;


Abstract. An automated system for dynamic positioning Mechanor SA-05 developed and manufactured by JSC Obukhov Plant, is presented. The complex makes it possible to automatically control a human body move-ment in the gravitational field using a computer program that sets various directions and speeds, amplitudes, and angular vibrations. The complex is used for diagnostics and treatment of respiratory, cardiovascular, cen-tral and peripheral nervous systems, musculoskeletal system, as well as activation of microcirculation of blood and other biological fluids. Based on the wavelet theory, quantitative parameters of non-stationary ECG, EEG, pulse wave and respiratory rhythms were determined during dynamic orthostatic tests.
Keywords: automated complex for dynamic positioning of a person in a gravitational field, nonstationary signals, wavelet theory, spectral integrals

References:

 

  1. Papadakis M.A., McPhee S.J. Current medical diagnosis and treatment, McGraw-Hill, 2019.
  2. Lee I., Sokolsky O., Chen S., Hatcliff J., Jee E., Kim B.G., King A., Mullen-Fortino M., Park S., Roederer A., Venkatasubramanian K. Proceedings of the IEEE, 2012, no. 1(100), pp. 75–90. DOI: 10.1109/JPROC.2011.2165270.
  3. Silva L.C., Almeida H.O., Perkusich A., Perkusich M. Sensors, 2015, vol. 15, рр. 27625–27670, DOI: 10.3390/s151127625.
  4. Lee E.A. Sensors, 2015, vol. 15, рр. 4837–4869, DOI: 10.3390/s150304837. 
  5. Aronov D.M., Lupanov V.P. Funktsional’nyye proby v kardiologii (Functional Tests in Cardiology), Moscow, 2007. (in Russ.)
  6. Wasserman E.L., Kartashev N.K., Zhvalevsky O.V., Roudnitsky S.B.F. Journal of Instrument Engineering, 2016, no. 11(59), pp. 952–958. DOI: 10.17586/0021-3454-2016-59-11-952-958. (in Russ.)
  7. Musaev А.А., Zagaynov А.I. Journal of Instrument Engineering, 2016, no. 11(59), pp. 959–963. DOI: 10.17586/0021-3454-2016-59-11-959-963. (in Russ.)
  8. Krivosheev S.V., Sokolov S.К., Oleynik R.V., Reznikov S.S. Journal of Instrument Engineering, 2018,
    no. 2(61), pp. 181–185. DOI: 10.17586/0021-3454-2018-61-2-181-185. (in Russ.)
  9. Abuhay T.M., Kovalchuk S.V., Balakhontceva M.A., Boukhanovsky A.V. Journal of Instrument Engineering, 2018, no. 8(61), pp. 730–733. DOI: 10.17586/0021-3454-2018-61-8-730-733. (in Russ.)
  10. Patent RU 2391084, Mekhanurgicheskiy stol dlya massazha I manual’noy terapii (Mechanurgical Table for Massage and Manual Therapy), Tolkachev P.I., Panteleyev A.V., Podvyaznikov M.L., http://bd.patent.su/2391000-2391999/pat/servl/servletbeec.html. (in Russ.)
  11. https://nevacert.ru/reestry/med-reestr/fsr-2011-12256-o29123. (in Russ.)
  12. Patent RU 100902 U1, Sredstvo distal’noy fiksatsii nizhney konechnosti cheloveka na meditsinskom ili sportivno-trenazhernom oborudovanii (Means of Distal Fixation of the Lower Limb of a Person on Medical or Sports Equipment), Tolkachev P.I., Panteleyev A.V., Podvyaznikov M.L., 2011, https://patents.s3.yandex.net/RU100902U1_20110110.pdf. (in Russ.)
  13. https://yadi.sk/i/ouOwkDNo9vra4A. (in Russ.)
  14. Chui C.K., Jiang O. Applied Mathematics. Data Compression, Spectral Methods, Fourier Analysis, Wavelet and Applications, Atlantis Press, 2013.
  15. Smolentsev N.K. Osnovy teorii veyvletov. Veyvlety v MatLab (Fundamentals of the Theory of Wavelets. Wavelets in MatLab), Moscow, 2008. (in Russ.)
  16. Bozhokin S.V., Lesova E.M., Samoilov V.O., Tolkachev P.I. Biophysics, 2012, no. 4(57), pp. 530–543.
  17. Sofronov G.A., Suvorov N.B., Tolkachev P.I., Sergeev T.V. Medical Academic Journal, 2014,
    no. 3(14), pp. 38–51. (in Russ.)
  18. Bozhokin S.V., Lesova E.M., Samoilov V.O., Tarakanov D.E. Human Physiology. 2018, no. 1(44),
    pp. 32–40, DOI: 10.7868/S0131164618010058.
  19. Bozhokin S.V., Lesova E.M., Samoylov V.O., Barantsev K.A., Biophysics, 2020, no. 1(65), pp. 175–183,DOI: 10.31857/S0006302920010196.
  20. Bozhokin S.V., Suvorov N.B. Biomed. Radioelektron, 2008, no. 3, pp. 21–25, http://www.radiotec.ru/article/3118.
  21. Bozhokin S.V., Suslova I.B. Lecture Notes of Computer Science, LNCS, 2014, vol. 8638, рр. 467–480, https://link.springer.com/chapter/10.1007/978-3-319-10353-2_42.
  22. Certificate on the state registration of the computer programs 2016617155, Programma CWTPhase (CWTPhase Program), Bozhokin S.V., Priority 04 May 2016, Published 20.07.2016, Bulletin 7, http://www1.fips.ru/Archive/EVM/2016/2016.07.20/Index.htm  (in Russ.)