ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

8
Issue
vol 63 / August, 2020
Article

DOI 10.17586/0021-3454-2020-63-6-569-576

UDC 620.3

EFFECT OF INTENSIVE PLASTIC DEFORMATION ON THE STRUCTURE AND PROPERTIES OF THE ALUMINUM ALLOY SYSTEM AL-CU-MG

O. V. Paitova
Peter the Great St. Petersburg Polytechnic University, Institute of Machinery, Materales and Transport;


E. V. Bobruk
PhD, Associate Professor; Ufa State Aviation Technical University;


Шашерина С. А.
Санкт-Петербургский политехнический университет Петра Великого;


Abstract. The structure and properties of discs from cast coarse-grained D16 alloy are investigated using optical metallography and transmission electron microscopy, after heat treatment (HT) in traditional modes or exposition to intensive plastic deformation by torsion (IPDT) under pressure of 6 GPa at room temperature. The standard HT modes include: Т4 (hardening at 495°С + natural aging at room temperature for 5 days) and Т6 (hardening at 495°С + artificial aging at 185°С for 10 hours). It is shown that after HT of alloy D16 in T6 and Т4 modes, the grain size decreases by about 4.8 times, and the microhardness increases by 1.6 times, as compared to the initial characteristics. After one or ten revolutions of IPDT, the sizes of structural elements in D16 alloy decreases by 393 and 899 times, and microhardness increases by 2,4 and 2,9 times, respectively.
Keywords: nanocrystalline materials, ultrafine-grained materials, intensive plastic deformation, deformation heat treatment, duralumin

References:
  1. Sabirov I., Enikeev N.A., Murashkin M.Yu., Valiev R.Z. Bulk nanostructured materials with multifunctional properties, Cham, Heidelberg, NY, Dordrecht, London, Springer, 2015, 118 p.
  2. Liu M., Roven H.J., Liu X., Murashkin M., Valiev R.Z., Ungar T., Balogh L. Journal of Materials Science, 2010, vol. 45, p. 4659.
  3. Kozlov E.V., Glezer A.M., Koneva N.A., Popova N.A., Kurzina I.A. Osnovy plasticheskoy deformatsii nanostrukturnykh materialov (Basics of Plastic Deformation of Nanostructured Materials), Moscow, 2016. (in Russ.)
  4. Valiyev R.Z., Aleksandrov I.V. Nanostrukturnyye materialy, poluchennyye intensivnoy plasticheskoy deformatsiyey (Nanostructured Materials Obtained by Intense Plastic Deformation), Moscow, 2000, 272 р. (in Russ.)
  5. Edalati K., Hashiguchi Y., Iwaoka H., Matsunaga H., Valiev R.Z., Horita Z. Materials Science and Engineering: A, 2018, vol. 729, рр. 340–348.  
  6. Raab G.I. Vestnik UGATU, 2004, no. 3(11), pp. 67. (in Russ.)
  7. Park Y.S., Chung K.H., Kim N.J. and Lavernia E.J. Materials Science and Engineering: A, 2004,  vol. 374, рр. 211.
  8. Lu K., Lu J. Materials Science and Engineering: A, 2004, vol. 375–377, p. 38.
  9. Zhenglin Chen, Zhidan Sun, Benoit Panicaud. Mechanics of Materials, 2019, vol. 129, рp. 279–289.
  10. Nana Li, Ning Wang, Scientific Reports, 2018, vol. 8, art. nо. 8454.
  11. Moskvichev E.N., Skripnyak V.A., Skripnyak V.V., Kozulin A.A., Lychagin D.V. Letters on materials, 2016, no. 6(2), pp. 141–145.
  12. Shasherina S.A. Artemyev, V.P., Sokolov, A.G., Padgurskas J. IOP Conference Series Materials Science and Engineering, 2019, vol. 666, р. 012004.
  13. Krylov N.A., Popov A.A. Procedia Engineering, 2017, Jan. 1, рр. 777–782.
  14. Skotnikova M.A., Krylov N.A. About the Nature of Dissipative Processes in Cutting Treatments of Titanium Vanes, Advances in Mechanical Engineering, Springer International Publishing, 2017,  pp. 115–123.
  15. Paitova O.V., Bobruk E.V., Shasherina S.A., Zhang Bufan, Key Engineering Materials, 2019, vol. 822, pp. 94–100.
  16. Skotnikova M.A., Martynov M.A. Practical electron microscopy in mechanical engineering, St. Peters 576 О. В. Паитова, Е. В. Бобрук, С. А. Шашерина, М. А. Скотникова ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2020. Т. 63, № 6 burg, St. Petersburg Institute of mechanical engineering, 2005, 92 р.
  17. Archakova Z.N., Balakhontsev G.A., Basova I.G. et al. Struktura i svoystva polufabrikatov iz alyuminiyevykh splavov (The Structure and Properties of Semi-Finished Products from Aluminum Alloys), Moscow, 1984. (in Russ.)
  18. Umanskiy Ya.S., Skakov Yu.S., Ivanov L.N. et al. Kristallografiya, rentgenografiya i elektronnaya mikroskopiya (Crystallography, Radiography and Electron Microscopy), Moscow, 1982, 632 р. (in Russ.)
  19. Murtazina A.K., Lukmanov M.R., Kiyekkuzhina L.U., Danilenko V.N. Vliyaniye usloviy deformatsii sdvigom pod davleniyem na tverdofaznyye prevrashcheniya v sisteme Al-Cu (Influence of Shear Strain Conditions under Pressure on Solid-Phase Transformations in the Al-Cu System), Collection of works, Ufa, 2018, рр. 129. (in Russ.)
  20. Patent RU 2539496, Sposob polucheniya mnogosloynogo kompozita na osnove medi i alyuminiya s ispol'zovaniyem kombinirovannoy mekhanicheskoy obrabotki (A Method of Obtaining a Multilayer Composite Based on Copper and Aluminum Using Combined Machining), I.A. Ditenberg,  K.I. Denisov, A.N. Tyumentsev et al. Priority 20.01.2015. (in Russ.)
  21. Burnyshev I.N., Valiakhmetova O.M., Lys V.F. Chemical physics and mesoscopy, 2010, no. 4(12),  pp. 519–525.
  22. Zuiko I., Kaibyshev R. Materials Science and Engineering A, 2017, vol. 702.
  23. Parshin A.M. Metal Science and Heat Treatment, 1997, no. 7–8(39), pp. 310–314.
  24. Ying P., Liu Z., Bai S., Wang J., Li J., Liu M., Xia L. Materials Science and Engineering: A, 2017,  vol. 707, DOI: 10.1016/j.msea.2017.09.054.
  25. Skotnikova M.A., Tsvetkova G.V., Lanina A.A., Krylov N.A., Ivanova G.V. Lecture Notes in Control and Information Sciences, 2015, no. 1(22), pp. 93–101.