ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)

vol 63 / December, 2020

DOI 10.17586/0021-3454-2020-63-7-626-633

UDC 007, 621.391.82


A. S. Kremlev
ITMO University, Saint Petersburg, 197101, Russian Federation; Associate professor

K. A. Zimenko
ITMO University, Saint Petersburg, 197101, Russian Federation; Senior Scientific Researcher

Y. . Аltay
ITMO University, Faculty of Control Systems and Robotics;

Abstract. A method for processing multichannel recording of ECG to isolate low-frequency interference in various leads is presented. The method is based on polynomial Newton filtering of high frequencies. The efficiency of the proposed method is analyzed, and a comparative analysis of its effectiveness relative to the known approaches is carried out based on quantitative indicators. Using the developed method, low-frequency interference was isolated from a noisy multi-channel recording. Based on the selected samples, a high correlation between low-frequency interference in various and adjacent leads of the electrocardiogram is established.
Keywords: ECG signal, low-frequency noise, correlation coefficient, polynomial filtering, Newton polynomial, Butterworth polynomial, multi-channel recording

  1. Makarov L.M., Komolyatova V.N., Pervova E.V., Ryabykina G.V., Soboleva A.V., Tikhonenko V.M., Turov A.N., Shubik Yu.V. Russian Journal of Cardiology, 2014, no. 2(106), pp. 6–71.
  2. Nemirko A.P., Manilo L.A., Kalinichenko A.N. Matematicheskiy analiz biomeditsinskikh signalov i dannykh (Mathematical Analysis of Biomedical Signals and Data), Moscow, 2017, 242 р. (in Russ.)
  3. Rangayyan R.M. Biomedical Signal Analysis: A Case-Study Approach, Wiley-IEEE Press, 2002, 552 p.
  4. Krasichkov A.S. Metodologicheskoye obespecheniye avtomatizirovannoy sistemy trevozhnoy signalizatsii pri razvitii ishemii miokarda (Methodological Support of an Automated Alarm System in the Development of Myocardial Ischemia), Extended abstract of Doctor’s thesis, St. Petersburg, 2016, 36 р. (in Russ.)
  5. Avdeeva D.K., KazakovV.Y., Natalinova N.M., Ivanov M.L., Yuzhakova M.A., Turushev N.V. European Journal of Physical and Health Education, 2014, no. 1(6), pp. 1–10.
  6. Fedotov A.A., Akulova A.S., Akulov S.A. Measurement Techniques, 2015, no. 11(57), pp. 1320–1325. DOI: 10.1007/s11018-015-0628-z.
  7. Fedotov A.A. Biomedical Engineering, 2016, no. 2(50), pp. 114–118. DOI: 10.1007/s10527-016-9600-8.
  8. Fedotov A.A., Akulova A.S. Journal of Communications Technology and Electronics, 2017, no. 4(62), pp. 415–420. DOI: 10.1134/S1064226917040064.
  9. Altay Y.A., Kremlev A.S., Zimenko K.A., Margun A.A. Biomedical Engineering, 2019, no. 3(53), pp. 176–180. DOI: 10.1007/s10527-019-09903-2.
  10. Grigor'yev E.B., Krasichkov A.S., Nifontov E.M. Radio Electronics and Communications Systems, 2018, no. 6(21), pp. 118–125. DOI: 10.32603/1993-8985-2018-21-6-118-125. (in Russ.)
  11. Tompkins W.J. Biomedical Digital Signal Processing, New Jersey, Upper Saddle River, 2000.
  12. Altay Y.A., Kremlev A.S., Zimenko K.A. Proc. of EIConRus Intern. Conf., St. Petersburg, 2020, рр. 1464–1469.
  13. Altay Y.A., Kremlev A.S., Nuralinov O.M, Vlasov S.M., Penskoi A.V., Zimenko K.A., Margun A.A. Cardiometry, 2019, no. 15, pp. 63–72. DOI: 10.12710/cardiometry.2019.15.6372.
  14. Paarman L.D. Design and Analysis of Analog Filters: a Signal Processing Perspective, NY, Kluwer Academic Publishers, 2003.
  15. Kwon O., Jeong J. Healthcare Informatics Research, 2018, no. 3(24), pp. 198–206. DOI: 10.4258/hir.2018.24.3.198.
  16. Kalinichenko A.N., Yur'yeva O.D. Information and Control Systems, 2008, no. 2(33), pp. 46–49. (in Russ.)
  17. Lyons R.G. Understanding Digital Signal Processing, Pearson Education, Inc. 2011.
  18. Howto 12 leadECGsignalmeasurement,; Subaction=HTMLView;ItemID=28;Field=Field1.
  19. Salin V.N., Churilova E.Yu. Praktikum po kursu "Statistika" (Workshop on the Course "Statistics"), Moscow, 2002, 188 р. (in Russ.)