ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)

vol 63 / September, 2020

DOI 10.17586/0021-3454-2020-63-8-727-738

UDC 535.8


N. N. Bogdanov
ITMO University, Faculty of Software Engineering and Computer Systems; Junior Scientist;

D. D. Zhdanov
ITMO University, Saint Petersburg, 197101, Russian Federation ; Associate Professor

I. S. Potemin
ITMO University, Faculty of Software Engineering and Computer Systems;

Abstract. The problem of designing optical systems of circular radiation with several multidirectional sources for devices of wireless Li-Fi communication between vehicles is considered. A modification of the ray mapping method for the problem of designing optical elements of a Li-Fi module is proposed by introducing an integral source model. The results of calculations and virtual prototyping of devices designed using the proposed method are presented.
Keywords: nonimaging optics, freeform surfaces, optical wireless communication, Li-Fi

  1. Valavanidis A. Scientific Reviews, 2018, vol. 1, рр. 1–26.
  2. (in Russ.)
  3. Demba A., Möller D.P.F. 2018 IEEE International Conference on Electro/Information Technology (EIT), 2018, рр. 0459–0464.
  4. NHTSA. Vehicle-to-Vehicle Communication,
  5. Birdsall M. Institute of Transportation Engineers, ITE Journal, 2014, no. 5(84), pp. 36.
  6. Alam M., Ferreira J., Fonseca J. Intelligent Transportation Systems, Springer, Cham, 2016, рр. 11–13.
  7. IEEE 1609 - Family of Standards for Wireless Access in Vehicular Environments (WAVE),
  8. in W.L. et al. Proceedings of transportation research board annual meeting, 2012.
  9. Boukerche A. et al. Computer communications, 2008, no. 12(31), pp. 2838–2849.
  10. Haas H. Reviews in Physics, 2018, no. 3, pp. 26–31.
  11. Haas H. et al. Journal of lightwave technology, 2015, no. 6(34), pp. 1533–1544.
  12. Tsonev D., Videv S., Haas H. Broadband Access Communication Technologies VIII. – International Society for Optics and Photonics, 2014, no. 9007, pp. 900702.
  13. Islim M.S., Haas H. ZTE communications, 2019, no. 2(14), pp. 29–40.
  14. Ferreira R.X.G. et al. IEEE Photonics Technology Letters, 2016, no. 19(28), pp. 2023–2026.
  15. Wu X., Safari M., Haas H. IEEE Transactions on Communications, 2017, no. 12(65), pp. 5375–5385.
  16. Nachimuthu S., Pooranachandran S., Aarthi B.S. International Research Journal of Engineering and Technology (IRJET), 2016, no. 05(3).
  17. Shieh W.Y. et al. IEEE Transactions on Vehicular Technology, 2018, no. 12(67), pp. 11563–11574.
  18. Kulkarni S., Darekar A., Shirol S. 2017 International Conference on Circuits, Controls, and Communi-cations (CCUBE), IEEE, 2017, рр. 187–190.
  19. Yogarayan S. et al. Journal of Physics: Conference Series, IOP Publishing, 2020, no. 1(1502), pp. 012012.
  20. Yeasmin N., Zaman R., Mouri I.J. International Journal of Computer Science, Engineering and Infor-mation Technology, 2016, no. 3/4(6), pp. 1–7.
  21. Kirrbach R., Jakob B., Noack A. Photoptics, 2019, рр. 248–254.
  22. Kirrbach R., Faulwaßer M., Jakob B. 2019 Global LIFI Congress (GLC), IEEE, 2019, рр. 1–6.
  23. Wang K. et al. Optics Express, 2011, no. 104(19), pp. A830–A840.
  24. Ding Y. et al. Optics Express, 2008, no. 17(16), pp. 12958–12966
  25. Kirrbach R. et al. Applied Sciences, 2020, no. 4(10), pp. 1540.
  26. (in Russ.)
  27. Konoplyanko V.I. Osnovy bezopasnosti dorozhnogo dvizheniya (Road Safety Fundamentals), Mos-cow, 1978. (in Russ.)
  29. Landsberg G.S. Optika (Optics), Moscow, 1976. (in Russ.)
  30. Bogdanov N.N., Zhdanov D.D., Potemin I.S. Journal of Instrument Engineering, 2020, no. 7(63), pp. 640–649.
  31. Hybrid Light Simulation Software Lumicept,
  32. Osram Opto Semiconductors,®%20Piccolo%20SFH% 204170S%20A01/com/en/class_pim_web_catalog_103489/global/prd_pim_device_12764899/.
  33. Hamamatsu,
  34. Solid Works,
  35. Wayne T. Electronic communications systems, 5th ed. Saddle River (N.J.), Prentice Hall, 2004.