ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)

vol 63 / September, 2020

DOI 10.17586/0021-3454-2020-63-9-777-785

UDC 004.056.55


M. O. Tanygin
South-West State University, Department of In-formation Security; Head of the Department;

Abstract. A method for determining information packets source in systems using communication protocols that do not allow generating messages longer than 10—15 bytes, is described. The method is based on determining whether a particular received packet belongs to a structured set of fixed size packets associated with the source. To identify the ownership, each information packet contains a hash sequence field formed on data from other packets of the source and the source unique numeric identifier. As a result of analysis of this sequence and sequences of other information packets, the receiver generates a set of packets that form a single source message and determines location of each packet in the message. Using the probability theory and the theory of random processes, numerical characteristics of the probability of occurrence of error in determining the packet generated source are derived. The error probability dependences on the information packet generating algorithm parameters — the hash field length and the power of the analyzed set of information packets — are obtained. Applicability of the method for separating messages from multiple sources is demonstrated, and the dependencies between the hash field length and the number of message sources are formulated.
Keywords: messages source determining, probability theory, hash, transmission error, the message generation algorithm parameters

  1. Bellare M., Canetti R., Krawczyk H. Advances in Cryptology. Lecture Notes in Computer Science, 1996, vol. 1109, рр. 1–15.
  2. Black J., Rogaway P. J. Cryptol, 2015, no. 2(18), pp. 111–131.
  3. Stallings W. Cryptologia, 2010, no. 34(2), pp. 163–175.
  4. PCI Special Interest Group. PCI Express® Base Specification Revision 3.0, doi=
  5. Slobodin R.S., Dobritsa V.P., Tanygin M.O., Taldykin E.V., Nepochatykh E.V. Telekommunikatsii (Telecommunications), 2019, no. 8, pp. 21–26. (in Russ.)
  6. Tanygin M.O., Tipikin A.P. Telecommunications and Radio Engineering, 2007, no. 5(66), pp. 453–463.
  7. Tipikin A.P., Glazkov A.S. Information Technologies (Informacionnye Tehnologii), 2010, no. 5, pp. 25–30. (in Russ.)
  8. Tipikin A.P., Glazkov A.S., Muratov S.А. Telekommunikatsii (Telecommunications), 2009, no. 10, pp. 33–37.
  9. Lodneva O.N., Romasevich E.P. Modern Information Technologies and IT-education, 2018, no. 1(14), pp. 149–169. (in Russ.)
  10. Murav'yeva-Vitkovskaya L.А. Journal of Instrument Engineering, 2017, no. 10(60), pp. 951–956. (in Russ.)
  11. Karri R., Rajendran J., Rosenfeld K., Tehranipoor M. Computer, 2010, no. 10(43), pp. 39–46, DOI: 10.1109/MC.2010.299.
  12. Ganesh Kumar, Sriman B., Murugan A., Muruganantham B. Journal of Electrical and Computer Engineering, 2020, no. 1(10), pp. 438–446,DOI: 10.11591/ijece.v10i1.pp438-446.
  13. Shangping W., Dongyi L., Yaling Z., Juanjuan C. IEEE Access, 2019, vol. 7, DOI:10.1109/ACCESS.2019.2935873.
  14. Tanygin M.O., Alshaia Kh.Ya., Altukhova V.А. Telekommunikatsii (Telecommunications), 2019, no. 3, pp. 12–21.
  15. Venttsel' E.S., Ovcharov L.A. Teoriya sluchaynykh protsessov i yeye inzhenernyye prilozheniya (Theory of Stochastic Processes and Its Engineering Applications), Moscow, 1991, 384 р. (in Russ.)