ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)

vol 64 / January, 2021

DOI 10.17586/0021-3454-2020-63-12-1103-1111

UDC 543.27.8


D. A. Rozhkov
ITMO University; Faculty of Applied Optic;

A. M. Gurovich
PhD; LLC Innovative Equipment and Technologies, General Designer ;

S. Y. Chakchir
PHD; LLC Scientific Production Enterprise “ADVENT”, Executive Manager;

P. A. Gaponov
St. Petersburg Electrotechnical University "LETI”, Department of Electronic Instruments and Devices ;

Abstract. Issues related to the creation of a remote gas analyzer operating in the mid-infrared range are considered, elements of both domestic manufacturers and foreign analogues are analyzed. The working scheme is described, its energy losses are estimated, the dependence of the signal change on the gas concentration at distances of 1 and 2 m is measured, the operation of the sensor at distances of 5 and 10 m is theoretically estimated. The results of calculations and measurements show that at this stage the device is inferior to modern remote gas analyzer, however, it is capable of working with high accuracy with a distance between modules from 5 to 100 m and is best suited for continuous stationary monitoring of industrial facilities for leaks.
Keywords: the mid-IR range, Remote gas analyzer, Mid-IR sources, Mid-IR receivers, combustible gas, methane, signal vs. concentration

  1. Cicerone R.J., Oremland R.S. Global biogeochemical cycles, 1988, no. 4(2), pp. 299–327,
  2. Fedorenko G., Oleksenko L., Maksymovych N. Nanoscale research letters, 2017, no. 12, pp. 329, DOI 10.1186/s11671-017-2102-0.
  3. Mr. Sibu Thomas, Ms. Nishi Shahnaj Haider. International Journal of Engineering Research and Applications, 2014, no. 5(4), pp. 137–143.
  4. Fei Wang, Shuhai Jia, Yonglin Wang, Zhenhua Tang. Applied sciences, 2019, no. 9, pp. 2816, DOI: 10.3390/app9142816.
  5. Crawford M., Stewart G., McGregor G., Gilchrist J.R. Sensors and Actuators, 2006, no. 113, pp. 830–836,
  6. Werle P., Slemr F., Maurer K., Kormann R. Optics and lasers in engineering, 2002, no. 2-3(3), pp. 101–114,
  7. Shih-Hua Huang, Yen-Jie Huang, Hsiang-Chen Chui. IEEE Sensors Journal, 2018, no. 15(18), pp. 6169–6174, DOI:10.1109/jsen.2018.2845443.
  8. Wang Wen-qing, Zhang Lei, Zhang Wei-hua. Procedia Engineering, 2013, vol. 52, рр. 401–407, DOI: 10.1016/j.proeng.2013.02.160.
  9. Timofeev Yu.M., Vasiliev A.V. Osnovy teoreticheskoy atmosfernoy optiki (Fundamentals of Theoretical Atmospheric Optics), St. Petersburg, 2007, 152 р. (in Russ.)
  10. Fanchenko S., Baranov A., Savkin A., Petukhov A. 2015 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS) Proceedings, 2015, DOI: 10.1109/EESMS.2015.7175868.
  11. Kharlanov A.N., Shilina M.I. Infrakrasnaya spektroskopiya dlya issledovaniya adsorbtsionnykh, kislotnykh i osnovnykh svoystv poverkhnosti geterogennykh katalizatorov (Infrared Spectroscopy for Studying Adsorption, Acidic and Basic Surface Properties of Heterogeneous Catalysts), Moscow, 2011, 110 р. (in Russ.)
  12. (in Russ.)
  13. Willert C., Stasicki B., Klinner J., Moessner S. Measurement science and technology, 2010, vol. 21, рр. 129–247, DOI: 10.1088/0957-0233/21/7/075402.
  14. Makarov N.S., Glebus I.S. Interekspo Geo-Sibir' (Interexpo Geo-Siberia), Int. Scientific. Conf. SGGA, Novosibirsk, 2012, vol. 1, рр. 90–95. (in Russ.)
  15. Kataev M.Yu. Proceedings of Tomsk State University of Control Systems and Radioelectronics, 2015, no. 4(38). (in Russ.)