ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

10
Issue
vol 67 / October, 2024
Article

DOI 10.17586/0021-3454-2021-64-2-104-108

UDC 519.713

LANE DETECTION ALGORITHM

M. S. Korium
ITMO University, Faculty of Control Systems and Robotics;


A. A. Abdelsalam
ITMO University, Faculty of Control Systems and Robotics;


S. Y. Perepelkina
Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, 195251. Russian Federation; Associate Professor


Read the full article 

Abstract. The solution to the problem of unmanned vehicle control is based on the use of theoretical and practical developments in the field of technical vision and trajectory control. Technical vision methods are used to analyze the surroundings of vehicle movement. The proposed algorithm development applies a global analysis of geometric relationships between image elements: a road lane and a moving car. This algorithm is presented as part of an autonomous vehicle control system using the Lua language and exploiting the generalized Hough transform. Examples of the algorithm implementation are presented.
Keywords: vehicle, lane, pattern recognition, technical vision

References:
  1. Ballard D.H., Brown C.M. Computer Vision, Prentice Hall, 1982. ISBN 0-13-165316-4.
  2. Huang T. 19th CERN School of Computing, Vandoni C.E, ed., Geneva, CERN, 1996-11-19, pp. 21–25. ISBN 978-9290830955. DOI:10.5170/CERN-1996-008.21.
  3. Elmenreich W. Sensor Fusion in Time-Triggered Systems, PhD Thesis, Vienna, Austria, Vienna University of Technology, 2002. 173 p.
  4. Haghighat M.B.A., Aghagolzadeh A., & Seyedarabi H. Computers & Electrical Engineering, 2011, no. 5(37), pp. 789–797.
  5. Bengio Y., Courville A., Vincent P. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, no. 8(35), pp. 1798–1828.
  6. Schmidhuber J. Neural Networks, 2015, no. 61, pp. 85–117. PMID 25462637. arXiv:1404.7828. DOI:10.1016/j.neunet.2014.09.003.
  7. Umbaugh S.E. Digital image processing and analysis: human and computer vision applications with CVIPtools, Boca Raton, FL, CRC Press, 2010. ISBN 978-1-4398-0205-2.
  8. Barrow H.G. and Tenenbaum J.M. Artificial Intelligence, 1981, no. 1–3(17), pp. 75–116.
  9. Lindeberg T. Encyclopedia of Mathematics, Hazewinkel M., ed., Springer Science+Business Media B.V., Kluwer Academic Publishers, 2001. ISBN 978-1-55608-010-44.
  10. Lindeberg T. International Journal of Computer Vision, 1998, no. 2(30), pp. 117–154.
  11. Wang Q., Zheng J., Xu H., Xu B., and Chen R. IEEE Trans. Intel. Transp. Syst., 2018, no. 5(19), pp. 1365–1374.
  12. Qian Y., Yang M., Wang C., and Wang B. Proc. IEEE Int. Conf. Robot. Automat., May, 2018, pp. 2007–2012.
  13. Pan X., Shi J., Luo P., Wang X., and Tang X. Proc. 32nd AAAI Conf. Artif. Intel., 2018, pp. 1–8.
  14. Wang Z., Ren W., and Qiu Q., arXiv:1807.01726, Jul. 2018, https://arxiv.org/abs/1807.01726.
  15. Ronneberger O., Fischer P., and Brox T. Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent, NY, USA, Springer, 2015, pp. 234–241.
  16. Fu C., Hu P., Dong C., Mertz C., and Dolan J.M. Proc. 21st Int. Conf. Intel. Transp. Syst., Nov. 2018, pp. 3805–3810.
  17. Caltagirone L., Scheidegger S., Svensson L., and Wahde M. arXiv:1703.03613, Mar. 2017, https://arxiv.org/abs/1703.03613.
  18. Oliveira L., Burgard W., and Brox T. Proc. IEEE/RSJ Int. Conf. Intel. Robots Syst., Oct. 2016, pp. 4885–4891.
  19. Aly M. Proc. IEEE Intel. Veh. Symp., Jun. 2008, pp. 7–12.
  20. Wiest D.J., Reuter S., Szczot M., Konrad M., and Dietmayer K. Proc. 15th Int. IEEE Conf. Intel. Transp. Syst., Sep. 2012, pp. 270–275.
  21. Jiang Y., Gao F., and Xu G. Proc. Int. Conf. Image Anal. Signal Process., Apr. 2010, pp. 114–117.
  22. De Brabandere N. B., Georgoulis S., Proesmans M., and Van Gool L. Proc. IEEE Intell. Veh. Symp., Jun. 2018, pp. 286–291.
  23. Sun Z., Bebis G., and Miller R. IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 5, pp. 694–711, May 2006
  24. Tzomakas C. and Seelen W. Tech. Rep. 98-06 Inst. fur neuroinformatik, Ruhtuniversitat, Germany, 1998.
  25. Kastrinaki V., Zervakis M., Kalaitzakis K. Image, Vis., Comput., 2003, no. 4(21), pp. 359–381.
  26. Foresti L., Murino V., and Regazzoni C. IEEE Trans. Veh. Technol., 1999, no. 1(48), pp. 301–318.
  27. Patent U.S. 3,069,654, Method and means for recognizing complex patterns, Hough P.V.C., Dec. 18, 1962.
  28. Hough P.V.C. Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959, рр. 554–558.
  29.  Lucas B.D. and Kanade T. IJCAI81, 1981, pp. 674–679.
  30. Chiu C., Ku M., and Wang C. Journal of Information Science and Engineering, 2010, no. 2(26), pp. 611–629.
  31. Trambitckii K.V., Anding K., Polte G.А., Garten D., Musalimov V.М. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, no. 5(15), pp. 796–802. (in Russ.)
  32. Trambitckii K., Anding K., Polte G., Garten D., Musalimov V., Kuritcyn P. Acta IMEKO, 2016, no. 4(5), pp. 19–23.
  33. Trambitckii K.S., Anding K., Musalimov V.M., Linss G. Journal of Physics: Conference Series, 2015, no. 1(588), pp. 012038.