ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

11
Issue
vol 67 / November, 2024
Article

DOI 10.17586/0021-3454-2021-64-4-276-287

UDC 621.375.826:681.2.084

DYNAMIC MODEL OF AN OPTOELECTRONIC SYSTEM FOR MEASURING THE PARAMETERS OF A VIBRATION SUPPORT IN A LASER GYROSCOPE

A. A. Aviev
NPK “Electrooptika” corp., Moscow, 107076, Russian Federation; leading specialist


V. N. Enin
Bauman Moscow State Technical University, Moscow, 105005, Russian Federation; Professor


Read the full article 

Abstract. An optoelectronic system that measures relative vibration parameters of a laser gyro sensing element in the dither mode is studied. The system enables to compensate the component of the gyro output signal caused by the oscillations. The measuring system under consideration consists of a flat miniature pattern plate mounted on the sensing element monoblock, an optoelectronic module mounted on the laser gyro body and an electronic unit for processing electrical signals. The system operation is based on registration of laser radiation reflected from areas of the pattern plate with micromarks. A dynamic model of the measuring system is constructed with the use of equations of analytical mechanics. The developed model enables to study translational and rotational motions of the system elements. Results of numerical modeling of the motion of the gyroscope sensing element rigidly connected to the pattern plate, are presented. It is anticipated that the motion parameters obtained with the model will make it possible to estimate the instrumental errors of the measuring system.
Keywords: laser gyro, ring laser, dither system, optoelectronic system, mathematical model

References:
  1. Aronowitz F. Optical gyros and their application, RTO-AG-339, 1999, рр. 3-1–3-45.
  2. Luk'yanov D.P. et al. XX Sankt-Peterburgskaya mezhdunarodnaya konferentsiya po integrirovannym navigatsionnym sistemam (XX St. Petersburg International Conference on Integrated Navigation Systems) Conference Proceedings, St. Petersburg, 2013, рр. 7–21. (in Russ.)
  3. Peshekhonov V.G. Gyroscopy and Navigation, 2020, no. 2(28), pp. 3—10, DOI: 10.17285/0869-7035.0028. (in Russ.)
  4. Lukyanov D.P., Raspopov V.Ya., Filatov Yu.V. Prikladnaya teoriya giroskopov (Applied Theory of Gyroscopes), St. Petersburg, 2015, 316 р. (in Russ.)
  5. Patent US4411527, Ring laser gyroscope with compensation, G. Gamertsfelder, B. Ljung, Oct. 25, 1983.
  6. Ansheng C., Jianli L., Zhongyi C. Proc. 8th IEEE international symposium on instrumentation and control technology (ISICT), London, 2012, рр. 178–182. DOI: 10.1109/ISICT.2012.6291615.
  7. Chirkin M.V., Mishin V.Yu., Morozov D.A. et al. XX Sankt-Peterburgskaya mezhdunarodnaya konferentsiya po integrirovannym navigatsionnym sistemam (XX St. Petersburg International Conference on Integrated Navigation Systems) Conference Proceedings, St. Petersburg, 2014, рр. 327–329. (in Russ.)
  8. Regimanu B., Das K., Rao K. Frequenz, 2019, vol. 73, рр. 123–130, DOI: https://doi.org/10.1515/freq-2018-0195.
  9. Regimanu B., Das K.Ch., Rao K.S., Rao N.V.K. Gyroscopy and Navigation, 2019, no. 3(27), pp. 71–86, DOI: 10.17285/0869-7035.0008. (in Russ.)
  10. Regimanu B., Das K., Rao K. et al. IEEE sensors letters, 2018, no. 3(2), pp. 1–4, DOI: 10.1109/LSENS.2018.2865426.
  11. Klimkovich B.V., Tolochko A.M. Gyroscopy and Navigation, 2016, no. 2(7), pp. 137–144.
  12. Banerjee K., Dam B., Majumdar K. et al. Proc. 2004 IEEE region 10 conference TENCON 2004, Chiang Mai, 2004, vol. A(1). рр. 689–692, DOI: 10.1109/TENCON.2004.1414514.
  13. Chesnokov G.I., Polikovsky E.F., Molchanov A.V. et al. XX Sankt-Peterburgskaya mezhdunarodnaya konferentsiya po integrirovannym navigatsionnym sistemam (XX St. Petersburg International Conference on Integrated Navigation Systems) Conference Proceedings, St. Petersburg, 2003, рр. 155–164.
  14. Aviev A.A. Izvestiya Tula State University, 2016, no. 6, pp. 14–25. (in Russ.)
  15. Aviev A.A., Enin V.N. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, no. 2(18), pp. 197–204, DOI: 10.17586/2226-1494-2018-18-2-197-204.
  16. Bishop R. Mechatronic systems, sensors, and actuators, CRC Press, 2007, 692 p.
  17. Appell P. Traite de mecanique rationnelle, 1904, T. 2, 562 p.
  18. Ayzerman M.A. Klassicheskaya mekhanika (Classic Mechanics), Moscow, 1980, 368 р. (in Russ.)
  19. Kvetkin G.A. Instrumental'nyye pogreshnosti izmeritel'nogo bloka na baze triady lazernykh giroskopov pri dinamicheskikh vozmushcheniyakh (Instrumental Errors of the Measuring Unit Based on the Triad of Laser Gyroscopes under Dynamic Disturbances), Candidate’s thesis, Moscow, 2011, 206 р. (in Russ.)