ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

11
Issue
vol 67 / November, 2024
Article

DOI 10.17586/0021-3454-2021-64-4-294-299

UDC 543.42

SPECTROPHOTOMETRY OF BASIC DISINFECTANTS IN THE ULTRAVIOLET WAVELENGTH RANGE

A. V. Arefiev
University at the EurAsEC Inter-Parliamentary Assembly, Department of Mathematics and Information Technologies;


R. B. Guliyev
University at the EurAsEC Inter-Parliamentary Assembly, Department of Mathematics and Information Technologies;


E. E. Majorov
Saint-Petersburg state university of aerospace instrumentation; Associate professor


V. B. Kotskovich
St. Petersburg State University of Aerospace Instrumentation, Department of Higher Mathematics and Mechanics;


V. P. Pushkina
St. Petersburg State University of Aerospace Instrumentation, Department of Higher Mathematics and Mechanics;


M. V. Khokhlova
A. F. Mozhaisky Military Space Academy, Department of Physics; Associate Professor


Read the full article 

Abstract. The relevance of studying the optical properties of disinfectants by means of spectrophotometry is demonstrated. A block diagram of a spectrophotometer operating in the ultraviolet wavelength range is presented. The technical and operational characteristics of the spectrophotometer are given. Spectral dependences of the transmittance, T(λ), of aldehydes (formaldehyde, glutaraldehyde), alcohols (ethyl, isopropyl), peracetic acid, and hydrogen peroxide 30% are obtained. Spectral maxima of transparency in the short-wave region of the ultraviolet range, which occurred at λ = 230, 250, 285, 300, 330, 340 nm ("shoulders" in the T(λ) spectrum) are revealed. At the long-wave boundary of the operating spectral range (λ ≥ 400 nm), all the spectra are shown to converge monotonically with the account for the transmittance measurement error.
Keywords: spectrophotometer, transmission coefficient, disinfectant, radiation wavelength, spectrum, polychromator

References:
  1. Bulatov M.I., Kalinkin I.P. Prakticheskoye rukovodstvo po fotometricheskim metodam analiza (A Practical Guide to Photometric Methods of Analysis), Leningrad, 1986, 432 р. (in Russ.)
  2. Brown D., Floyd A., Sainsbury M. Organic Spectroscopy, Chichester, New York, J. Wiley, 1988, 250 p.
  3. Zaydel' A.N., Ostrovskaya G.V., Ostrovskiy Yu.I. Tekhnika i praktika spektroskopii (Technique and Practice of Spectroscopy), Moscow, 1976, 375 р. (in Russ.)
  4. Born M., Wolf E. Principles of Optics, Pergamon Press, 1970.
  5. Landsberg G.S. Optika (Optics), Moscow, 1976, 926 р. (in Russ.)
  6. Kreopalova G.V., Lazareva N.L., Puryayev D.T. Opticheskiye izmereniya (Optical Measurements), Moscow, 1987, 264 р. (in Russ.)
  7. Kazitsyna L.A., Kupletskaya N.B. Primeneniye UF-, IK- i YAMR-spektroskopii v organicheskoy khimii (Application of UV, IR and NMR Spectroscopy in Organic Chemistry), Moscow, 1971, 264 р. (in Russ.)
  8. Belov N.P., Lapshov S.N., Mayorov E.E., Sherstobitova A.S., Yaskov A.D. Journal of Applied Spectroscopy, 2012, no. 3(79), pp. 499–502.
  9. Belov N.P., Lapshov S.N., Sherstobitova A.S., Yaskov A.D., Maiorov E.E. Journal of Optical Technology, 2014, no. 1(81), pp. 39–43.
  10. Maiorov E.E., Prokopenko V.T., Ushveridze L.A. Pribory, 2014, no. 2(164), pp. 10–15. (in Russ.)
  11. Maiorov E.E., Mashek A.Ch., Tsygankova G.A., Khaydarov A.G., Abramyan V.K., Zaytsev Yu.E. Instruments and Systems: Monitoring, Control, and Diagnostics, 2016, no. 8, pp. 42–46. (in Russ.)
  12. Maiorov E.E., Turovskaya M.S., Litvinenko A.N., Chernyak T.A., Dagaev A.V., Ponomarev S.E., Kurlov V.V., Katunin B.D. Instruments and Systems: Monitoring, Control, and Diagnostics, 2018, no. 7, pp. 38–43. (in Russ.)
  13. Maiorov E.E., Mashek A.Ch., Tsygankova G.A., Pisareva E.A. Belgorod State University Scientific bulletin, 2018, no. 1(50), pp. 55–63. DOI: 10.18413/2075-4639-2018-50-1-55-63. (in Russ.)
  14. Maiorov E.E., Mashek A.Ch., Tsygankova G.A., Pisareva E.A. News of the Tula State University. Technical sciences, 2018, no. 4, pp. 357–365. (in Russ.)
  15. Maiorov Е.Е, Turovskaya M.S., Litvinenko A.N., Chernyak T.A., Dagaev A.V., Ponomarev S.E., Kurlov V.V., Katunin B.D. Instruments and Systems: Monitoring, Control, and Diagnostics, 2018, no. 7, pp. 38–43. (in Russ.)
  16. Maiorov Е.Е., Konstantinova A.A., Shalamay L.I., Tsygankova G.A., Mashek A.Ch., Pushkina V.P., Khokhlova M.V., Kotskovich V.B., Dagaev A.V. News of the Tula State University. Technical sciences, 2019, no. 7, pp. 212–223. (in Russ.)
  17. Arefiev A.V., Borodyansky Yu.M., Maiorov E.E., Dagaev A.V., Khokhlova M.V., Guliev R.B. Instruments and Systems: Monitoring, Control, and Diagnostics, 2020, no. 9, pp. 1–5. DOI: 10.25791/pribor.09.2020.1202. (in Russ.)
  18. Shalamay L.I., Kuzmina D.A., Maiorov E.E., Mendosa E.Yu., Sakerina A.I., Narushak N.S. Instruments and Systems: Monitoring, Control, and Diagnostics, 2020, no. 8, pp. 11–17. DOI: 10.25791/pribor.08.2020.1196. (in Russ.)
  19. Maiorov E.E., Shalamay L.I., Kuzmina D.A., Mendosa E.Yu., Narushak N.S., Sakerina A.I. News of the Tula State University. Technical sciences, 2020, no. 8, pp. 105–114. (in Russ.)