ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

10
Issue
vol 67 / October, 2024
Article

DOI 10.17586/0021-3454-2021-64-8-656-666

UDC 681.78

MULTI-CAMERA SYSTEM FOR DETERMINING COMPLEX-SHAPE FRUIT SIZE

B. M. Dinh
ITMO University, Department of Applied Optics;


A. N. Timofeev
ITMO University, Saint Petersburg, 197101, Russian Federation; Associate Professor, Senior Lecturer


V. V. Korotaev
ITMO University, Saint-Petersburg, 197101, Russian Federation; Full Professor


T. . Turgalieva
aint Petersburg National Research University of Information Technologies, Mechanics and Optics; postgraduate


Read the full article 

Abstract. The structure of an optoelectronic system for ensuring the separation of fruits of complex shape according to their geometric parameters is proposed. A genetic algorithm developed to solve the problem of optimizing location of the video cameras in the corresponding segments of space according to the criterion of ensuring the required error in determining the fruit shape is described and tested. Simulation modeling of the system performance with four video cameras shows that for restoring the shape of fruits with an error of 18 microns, it is sufficient to use a population of 30 individuals in the genetic algorithm. Parameters of spatial orientation of the four video cameras located at a distance of 500 mm from the fruit are found for estimated error of 3.5 μm in restoring three-dimensional coordinates of the points on the fruit surface.
Keywords: non-contact control, optoelectronic system, spatial arrangement of video cameras, genetic algorithm, image processing, estimation geometric parameters, fitness function, fruit sorting

References:
  1. Mcсarthy C.L., Hancock N.H., Raine S.R. Intel. Serv. Robot., 2010, no. 3, pp. 209–217.
  2. Rachmawati E., Supriana I., Khodra M.L. 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), September 1–6, 2017, http://ieeexplore.ieee.org/document/8239110/, https://doi.org/10.1109/EECSI.2017.8239110.
  3. Cerfontaine P.A., Schirski M., Bundgens D., Kuhlen T. Proceedings of the IEEE Conference on Virtual Reality, March 2006, рр. 295–296.
  4. Scott W.R. Machine Vision and Applications, 2009, no. 1(20), pp. 47–69.
  5. Rosell J.R., Sanz R. Comput. Electron. Agric., 2012, vol. 81, рр. 124–141.
  6. Khojastehnazhand M., Omid M., Tabatabaeefar A. Intern. J. Food Prop., 2010, no. 4(13), pp. 760–770.
  7. Dinh B.M., Korotaev V.V., Timofeev A.N. Almanac of Young Scientists of ITMO University, 2020, vol. 4, рр. 51–56. (in Russ.)
  8. Khojastehnazhand M., Omid M., Tabatabaeefar A. Afr. J. Plant Sci., 2010, no. 4(4), pp. 122–127.
  9. Olague G., Mohr R. 14th International Conference on Pattern Recognition, Brisbane, Australia, APRS and IAPR, August 16–20, 1998, vol. I, pp. 8–10.
  10. Dinh B.M., Konyakhin I.A., Timofeev A.N., Korotaev V.V. Smart Electromechanical Systems, April 2021, pp. 229–240, DOI:10.1007/978-3-030-68172-2_19.
  11. Rosten E., Porter R., Drummond T. IEEE Trans. Pattern Anal. Mach. Intel., 2010, vol. 32, рр. 105–119.
  12. Li L., Zhang Q., Huan D. Sensors, 2014, vol. 14, рр. 20078–20111.
  13. Brandily M.L., Monbet V., Bureau B., Boussard-Plédel C, Loréal O, Adam J.L, Sire O. Sens. Actuators B, 2011, vol. 160, рр. 202–206.
  14. Lorente D., Aleixos N., Gómez-Sanchis J., Cubero S., García-Navarrete O.L., Blasco J. Food and Bioprocess Technology, 2012, no. 5(4), pp. 1121–1142, DOI:10.1007/s11947-011-0725-1.
  15. Gongal A., Amatya S., Karkee M., Zhang Q., Lewis K. Comput. Electron. Agric., 2015, vol. 116, рр. 8–19, DOI:10.1016/j.compag.2015.05.021.
  16. Sachdeva V.D., Fida E., Baber J., Bakhtyar M., Dad I., Atif M. Proceedings of the 13th International Conference on Emerging Technologies (ICET), Islamabad, Pakistan, December 27–28, 2017, pp. 1–4.
  17.  Noordam J.C., Hemming J., Van Heerde C., Golbach F., Van Soest R., Wekking E. Acta Horticulturae, Leuven, Belgium, ISHS, 2005, vol. 691, pp. 885–889.
  18. http://valentin.davydov.spb.su/PO2020/Ming.pdf. (in Russ.)
  19. Gonzalez R.C., Woods R.E. Digital Image Processing, Prentice Hall, 2008, 954 р.
  20. Shapiro L., Stockman G. Computer Vision, Pearson Education, 2001.
  21. Brown D.C. Application of close-range photogrammetry to measurements of structures in orbit, Technical Report 80-012, Geodetic Services Incorporated, Melbourne Florida, September 15, 1980, vol. 1, 131 p.
  22. Fraser C.S. Photogramm. Eng. Remote Sensing, 1987, no. 4(48), pp. 561–570.
  23. Dzhabiev A.N., Konyakhin I.A., Pankov E.D. Avtokollimatsionnyye ugloizmeritel'nyye sredstva monitoringa deformatsiy (Autocollimation Angle Measuring Devices for Deformation Monitoring), St. Petersburg, 2000, 197 р. (in Russ.)
  24. Hoang V.P., Konyakhin I.A., Turgalieva T.V., Liu F. Proceedings of SPIE - The International Society for Optical Engineering, 5, Optical Sensing and Detection V, 2018, рр. 106802C.
  25. Rutkowska D., Pilinski M., Rutkowski L. Sieci neuronowe, algorytmy genetyczne i systemy rozmyte, Warszawa, Łodż, Wydawnictwo Naukowe PWN, 2004.
  26. Gladkov L.A., Kureichik V.V., Kureichik V.M. Geneticheskiye algoritmy (Genetic Algorithms), Moscow, 2006, 320 р. (in Russ.)
  27. Emelyanov V.V., Kureichik V.V., Kureichik V.M. Teoriya i praktika evolyutsionnogo modelirovaniya (Theory and Practice of Evolutionary Modeling), Moscow, 2003, 432 р. (in Russ.)
  28. Andreev A.L. Modelirovaniye i raschet avtomatizirovannykh videoinformatsionnykh sistem nablyudeniya za ob"yektami (Modeling and Calculation of Automated Video Information Systems for Monitoring Objects), St. Petersburg, 2013, 82 р. (in Russ.)