ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

2
Issue
vol 67 / February, 2024
Article

DOI 10.17586/0021-3454-2021-64-8-626-637

UDC 539.3–681.586

DYNAMIC CHARACTERISTICS OF PIEZOELECTRIC HARVESTERS

Y. V. Zagashvili
Silicium LLC;


V. G. Rudenko
Silicium LLC;


Read the full article 

Abstract. Dynamic models of piezo energy harvesters (PEH) based on thin single-layer piezoelectric elements (PE) are considered. Using an equivalent circuitry of the piezoelectric harvester, differential equations are obtained and the transfer functions of the PEH, which relate the input variable (the load force on the PE) to the output variables (the voltage and current of the load capacitor), are found. Analytical studies of steady-state and transient processes in PEH under typical loading forces (pulsed, stepped, harmonic) are carried out. It is shown that a sufficient condition for stable piezoelectric energy harvesting, which consists in a continuous charge of the load capacitor, is a non-zero acceleration of the load force on the PE. The influence of the parameters PEH – equivalent values of resistance, capacitance and inductance of PE, resistance of conductors and diodes of the rectifier, capacitance of the load capacitor, load resistance – on transient processes is considered. The estimate of the maximum achievable PEH power at a monoharmonic load force on the PE is obtained. The data of analytical calculations and experimental studies of the piezoelectric energy harvesting in PG with a single-layer disk PE in the load force jump and meander modes are presented. The results of the research are intended for the design of PEH with a known range of loading forces.
Keywords: dynamic characteristics of piezo energy harvesters, piezoelectric disk, stable piezoelectric energy harvesting, equivalent electric circuitry of the piezoelectric harvester, transfer functions of the piezoelectric harvester

References:
  1. Zhukov S.N. P'yezoelektricheskaya keramika: printsipy i primeneniye (Piezoelectric Ceramics: Principles and Applications), Minsk, 2003, 112 р. (in Russ.)
  2. Erturk A., Inman D.J. Piezoelectric energy harvesting, John Wiley & Sons, 2011, 402 p.
  3. Sharapov V.M., Musienko M.P., Sharapova E.V. P'yezoelektricheskiye datchiki (Piezoelectric Sensors), Moscow, 2006, 632 р. (in Russ.)
  4. Beeby S.B., Tudor M.J., White N.M. Meas. Sci. Technol., 2006, vol. 17, рр. 175–195, DOI:10.1088/0957-0233/17/12/R01.
  5. Cook-Chennault K.A., Thambi N., Sastry A.M. Smart Mater. Struct., 2008, vol. 17, DOI:10.1088/0964-1726/17/4/043001.
  6. Swee Leong Kok, Energy Harvesting Technologies: Thick-Film Piezoelectric Microgenerator, рp. 191–214, https://www.intechopen.com/doi:10.5772/25547.
  7. Calio R., Rongala U.B., Camboni D., Milazzo M., Stefanini C., Gianluca de Petris G., Oddo C.M. Sensors, 2014, vol. 14, рр. 4755–4790, DOI:10.3390/s140304755.
  8. Whitaker M., Bocharnikov I. Komponenty i tekhnologii, 2010, no. 8, pp. 146–149. (in Russ.)
  9. Gritsenko A., Nikiforov V., Shchegoleva T. Komponenty i tekhnologii, 2012, no. 9, pp. 63–67. (in Russ.)
  10. Golovnin V.A., Kaplunov I.A., Malyshkina O.V. et al. Fizicheskiye osnovy, metody issledovaniya i prakticheskoye primeneniye p'yezomaterialov (Physical Foundations, Research Methods and Practical Application of Piezo Materials), Moscow, 2016, 272 р. (in Russ.)
  11. Uchino K. The Development of Piezoelectric Materials and the New Perspective. Advanced Piezoelectric Materials, 2017, рр. 1–92, http://dx.doi.org/10.1016/B978-0-08-102135-4.00001-1.
  12. Min-Gyu Kang, Woo-Suk Jung, Chong-Yun Kang, Seok-Jin Yoon, Actuators, 2016, no. 5(5), DOI:10.3390/act5010005.
  13. Huicong Liu, Junwen Zhong, Chengkuo Lee, Seung-Wuk Lee, Liwei Lin, Applied Physics Reviews, 2018, no. 5, pp. 041306, DOI: 10.1063/1.5074184.
  14. Kaur N., Bhalla S. Journal of Civil Struct. Health Monitoring, 2014, no. 4, pp. 1–15, https://doi.org/10.1007/s13349-013-0048-1.
  15. Aghakhani A., Basdogan I., Erturk A. Smart Materials and Nondestructive Evaluation for Energy Systems, 2016, Proc. of SPIE, vol. 9806, DOI: 10.1117/12.2219079.
  16. Bayik B., Aghakhani A., Basdogan I., Erturk A. Smart Mater. Struct., 2016, vol. 25, DOI: 10.1088/0964-1726/25/5/055015.
  17. Yurlov M.A., Oshmarin D.A., Sevodina N.V., Yurlova N.A. Vestnik PNIPU. Mekhanika, 2018, no. 4, pp. 266–277. (in Russ.)
  18. Zemlyakov V.L. Issledovaniye parametrov p'yezoelementov pri impul'snom vozdeystvii (Investigation of the Parameters of Piezoelectric Elements under Impulse Action), Rostov-on-Don, 2009, 36 р. (in Russ.)
  19. Sharapov V., Sotula J. Electronics, 2012, no. 5, pp. 96–102. (in Russ.)
  20. Pang S., Li W., Kan J. Journal of Power Technologies, 2016, no. 1(96), pp. 1–7. 21. Chen Y.Y., Vasic D. Physics Procedia, 2015, vol. 70, рр. 1017–1021.
  21. Ramadass Y.K., Chandrakasan A.P. IEEE Journal of Solid-State Circuits, 2010, no. 1(45), pp. 189–204.
  22. Wang F., Wu W., Soroush M., Amin Abedini A. Journ. of Applied Nonl. Dynamics, 2016, no. 4(5), pp. 423–439.
  23. Makarov I.M., Menskiy B.M. Lineynyye avtomaticheskiye sistemy (Linear Automatic Systems), Moscow, 1977, 464 р. (in Russ.)
  24. Zagashvili Yu.V., Rudenko V.G. Journal of Instrument Engineering, 2021, no. 3(64), pp. 213–218. (in Russ.)
  25. Patent RU 185168 U1, H01H 13/705, P'yezomodul' (Piezomodule), Yu.V. Zagashvili, V.V. Belokon, V.G. Rudenko, V.V. Shalimov, Patent application no. 2018117971, Priority2018.05.15. Published 2018.11.23. (in Russ.)
  26. Ali Mohammed Abdal-Kadhim, Kok Swee Leong, Kok-Tee Lau, Journal of Telecommunication, Electronic and Comp. Engineering, 2016, no. 5(8), pp. 125–129.