ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2021-64-10-852-858

UDC 004.773

CONCEPTUAL MODEL OF DATA ROUTING IN A MULTI-SATELLITE LOW-ORBIT COMMUNICATION SYSTEM

O. V. Karsaev
St. Petersburg Federal Research Center of the RAS; Senior Scientist


Read the full article 

Abstract. The features of data routing in a multi-satellite low-orbit system providing communication of ground subscribers with each other and with spacecraft are investigated. The issues of constructing an orbital constellation, in which communication satellites form a network segment with a static topology, are considered. In this case, routing, in fact, boils down to solving two problems: the search for communication satellites that are in the zone of radio visibility of communication session respondents, and the search for data transmission routes in inter-satellite communication lines. To solve the first problem, an approach based on simulation of the structure of the orbital group is proposed. To solve the second problem, a method is developed that provides a search for routes with the account for current load of communication lines and balancing traffic in general. The lifetime of communication lines between the communication satellites and the respondents of communication sessions is limited by the time spent by the satellites in the radio visibility zones. In this regard, in addition to establishing initial connections, the task of moving the established connections is also considered.
Keywords: multi-satellite low-orbit communication system, subscriber communication line, data routing

References:
  1. https://www.protocols.ru/WP/wp-content/uploads/2016/11/rfc2501.pdf.
  2. Jacquet P., Clausen T. Optimized Link State Routing Protocol (OLSR), 2003, http://www.ietf.org/rfc/rfc3626.txt.
  3. Percins C., Belding-Royer E. Ad hoc On-Demand Distance Vector (AODV) Routing, 2003, 35 p., http://www.ietf.org/rfc/rfc3561.txt.
  4. Perkins C., Bhagwat P. Ad Hoc Networking, 2001, рр. 53–74.
  5. Radhakrishnan R., Edmonson W., Afghahb F., Rodriguez-Osorioc R., Pinto F., Burleighd S. IEEE Communications Surveys & Tutorials, 2016, no. 4(18), pp.. 2442–2473, DOI: 10.1109/COMST.2016.2564990.
  6. UL Hassan N., Huang C., Yuen C., Ahmad A., Zhang Y. IEEE Wireless Communications, 2020, рр. 1–8, DOI: 10.1109/MWC.001.1900394.
  7. Mikhailov R.L. Pomekhozashchishchennost' transportnykh setey svyazi spetsial'nogo naznacheniya (Interference Protection of Special-Purpose Transport Communication Networks), Cherepovets, 2016, 128 р. (in Russ.)
  8. Makarenko S.I. Sistemy upravleniya, svyazi i bezopasnosti, 2018, no. 4, pp. 1–34. (in Russ.)
  9. Patent RU2714220C1, Sposob marshrutizatsii v setyakh podvizhnoy personal'noy sputnikovoy svyazi na nizkoorbital'nykh sputnikakh-retranslyatorakh s zonal'noy registratsiyey abonentov i marshrutizator nizkoorbital'nogo sputnika retranslyatora s integrirovannymi sluzhbami dlya osushchestvleniya ukazannogo sposoba (Method of Routing in Mobile Personal Satellite Communication Networks on Low-Orbiting Satellite Retransmitters with Zonal Registration of Subscribers and A Router of a Low-Orbiting Relay Satellite with Integrated Services for Realizing Said Method), I.N. Pantelejmonov, Priority 2019.08.19, Published 2020.02.13. (in Russ.)
  10. Patent RU2658879C1, Sposob zonal'noy registratsii abonentskogo terminala seti personal'noy sputnikovoy svyazi (Method of Zonal Registration of Subscriber Terminal of Personal Satellite Communication Network), I.N. Pantelejmonov, Priority 2017.09.12, Published 2018.06.25. (in Russ.)
  11. Patent RU2679962C1, Sposob naznacheniya IP-adresov v seti personal'noy sputnikovoy svyazi na nizkoorbital'nykh sputnikakh retranslyatorakh s zonal'noy registratsiyey abonentskikh terminalov (Method of Assigning IP Addresses in a Personal Satellite Communication Network on Low-Orbit Satellites Repeaters with Zone Registration of Subscriber Terminals), I.N. Pantelejmonov, Priority 2018.02.20, Published 2019.02.14. (in Russ.)
  12. Caini C. Advances in Delay-Tolerant Networks (DTNs), Oxford, Woodhead Publishing, 2015, рр. 25–47, DOI: 10.1533/9780857098467.1.25.
  13. Bezirgiannidis N., Caini C., Tsaoussidis V. International Journal of Satellite Communications and Networking, 2016, no. 5(34), pp. 695–709, DOI: 10.1002/sat.1138.
  14. Karsaev O.V. Mekhatronika, Avtomatizatsiya, Upravlenie, 2020, no. 2(21), pp. 75–85, DOI: 10.17587/mau.21.75-85. (in Russ.)
  15. Fraire J.A., De Jonckere O., Burleigh S.C. Journal of Network and Computer Applications, 2021, vol. 174, pp. 102884. DOI: https://doi.org/10.1016/j.jnca.2020.102884.
  16. Makarenko S. Proceedings of Telecommunication Universities, 2020, no. 2(6), pp. 45‒59. (in Russ.) https://ru.wikipedia.org/wiki/Сфера_(ФЦП_развития_космических_информационных_технологий). (in Russ.)